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Casino $$$

mean reward 0.5 mean reward 0.6 mean reward 0.7

You will be playing a 100 times, what is a good strategy ?
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Drug Clinical Trial

Success Success Failure Success Failure Success

Which pill for the next patient ?
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Advertisement

Success Success Failure Success

Which picture for the next user ?
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Recommendation Systems

Success Success Failure Success

Which song for the next user ?
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Problem Formulation

Setting

• K options = K arms

• Each arm k ∈ [K ] has expected reward µk

• The values of the means are unknown to the agent

• At iteration t, agent picks arm at

• Receives reward µat + ϵt , with ϵt sub-gaussian mean 0 noise

GOAL

Maximize cumulative reward over T iterations ∼ minimize the regret:

R(T ) := T max
k∈[K ]

µk − E

[
T∑
t=1

µat

]
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Exploration/Exploitation trade-off

At iteration t, define the agent’s estimate for the average reward of arm

k (e.g. empirical mean):

µ̂k(t).

Greedy action: a∗(t) := argmaxk∈[K ] µ̂k(t).

Two options:

• Pull a∗(t) −→ Exploitation,

• Pull another arm −→ Exploration.

6



Toy example

Two Bernoulli arms:

Arm A, mean reward 0.6,

Arm B, mean reward 0.5.

• Explore-only strategy: Pull two arms equally until the end,

R(T ) = 0.1× T
2

Linear Regret.

• Exploit-only strategy : Pull the arm with highest empirical mean

(ties broken at random).

With proba. 0.2, at first pull, arm A returns 0 and arm B returns 1,

R(T ) ≥ 0.2× 0.1× T

Linear Regret.

Note: this strategy is also called Greedy and Follow-The-Leader

(FTL)
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Regret of FTL and Uniform

experiments drawn from an unnamed Colab Notebook
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Baseline Strategy

Explore uniformly at random for a fixed period (mK iterations).

Then run Greedy.

This is the Explore-Then-Commit (ETC) Algorithm.

Regret Bound

If ETC interacts with a 1-subgaussian bandit and an appropriate m:

R(T ) ≤ 1 + c
√
T ,

with c a universal constant.

The regret is no longer linear !!

9



Actually, we cheated...

The value of m giving the previous regret depends on the value of the

gap between the optimal arm and the second one.

In practice, m cannot be set to its optimal value

experiment drawn from Bandit Algorithm book, Lattimore and Szepesvari
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The Optimism Principle
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UCB Algorithm

At iteration t, define for each arm k ∈ [K ],

• the number of times arm k has been pulled before iteration t,

Tk(t − 1),

• the empirical mean of arm k ,

µ̂k(t),

• a ”reasonable” upper bound on the true mean of arm k,

Uk(t) := µ̂k(t) + 2

√
log(T )

Tk(t − 1)
.

Pull argmaxk∈[K ] Uk(t)
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UCB Algorithm
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Regret bound

W.l.o.g., assume arm 1 is the optimal arm. Define:

∆k := µ1 − µk .

Theorem

For 1-subgaussian arms, UCB’s regret is bounded as

R(T ) ≤ 16
K∑

∆k>0

log(T )

∆k
+ 3

K∑
k=1

∆k .
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Proof Sketch

We can decompose the regret:

R(T ) =
K∑

k=1

∆kE [Tk(T )]

A sub-optimal arm k is pulled iff:

1. the upper bound on arm k is larger than the true mean of the

optimal arm,

2. the upper bound on the optimal arm is smaller than its true mean.
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Proof Sketch

Bad event ”Some upper bound does not hold” happens with small

probability.

By Hoeffding’s inequality, for any t, k :

P (µk > Uk(t)) ≤
1

T 2
.

If for any t, k

µk ≤ Uk(t),

then for any sub-optimal arm k > 1:

Tk(T ) ≤ 16 log(T )

∆2
k

.
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Experiments

experiment drawn from Bandit Algorithm book, Lattimore and Szepesvari
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Bayesian Approach:

Thompson Sampling
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Algorithm

• Input a prior distribution for the arms’ parameters

• At every iteration, compute posterior,

• Sample from the posterior,

• Play optimal arm according to sampled parameters.
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Example with Bernoulli arms and Beta priors

• Prior Beta(αk , βk) for every arm.

If α = β = 1, the prior is U([0, 1]).

• Success of arm k : β ← β + 1,

• Failure of arm k : α← α+ 1,

Note 1 : here, Bernoulli and Beta are conjugate of each other, hence the

easy update. It is not always the case.

Note 2 : as αk and βk increase, the variance of Beta(αk , βk) decreases.
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experiment drawn from https:gdmarmerola.github.iots-for-bernoulli-bandit
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Comparison of the 3 strategies on the Bernoulli bandit with 4

arms

experiment drawn from https:gdmarmerola.github.iots-for-bernoulli-bandit
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Beyond Vanilla

Multi-Armed Bandits
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Linear Contextual Bandits

Iteration

t = 1

context x1,1 context x2,1 context x3,1

Iteration

t = 2

context x1,2 context x2,2
context x3,2
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Linear Contextual Bandits

• K arms (may be very large),

• For every arm k , at every iteration t, a d-dimensional feature vector

(context) xk,t ,

• Hidden parameter θ,

• Agent picks xt ∈ {x1,t , . . . , xN,t}, observe rt = xt · θ + ϵt ,

• Optimal arm depends on context: x∗t = argmaxk xk,t · θ,
• Goal : minimize regret

∑
t(x

∗
t − xt) · θ
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Combinatorial Bandits

• K arms,

• At iteration t, agent draws an ensemble of arm, At ⊂ [K ] subject to

a combinatorial constraint

At ∈ C,

• Receives reward: ∑
a∈At

xa(t),

• Observes xa(t) for each a ∈ At .
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Matching Bandit

u1 u2

u3

u4

u5

u6u7

u8

u9

u10

• Set of arms : edges of the

graph (U , E)
• Combinatorial constraint :

the selected arms form a

matching (no vertex is selected

twice)

+ Rank one structure:

Expected reward for arm (ui , uj),

E[xij(t)] = uiuj

Sentenac, F., Yi, J., Calauzenes, C., Perchet, V., and Vojnovic, M. Pure Exploration and Regret Minimization in Matching Bandits. In

International Conference on Machine Learning, 2021. 27



Multi-player Bandits

Second-by-second packet routing

Dropped packets have to be resent in next

rounds

→ Learning in repeated games with carryover?
Flore Sentenac, Etienne Boursier, and Vianney Perchet. Decentralized learning in online queuing systems. arXiv preprint

arXiv:2106.04228, 2021.
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Thank you!
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