Online Matching in Bipartite Graphs

Flore Sentenac

Motivations: Dynamic allocation

Ad - User allocation

Ad - User allocation

Problem definition

Graph $\mathcal{G} = ((\mathcal{U}, \mathcal{V}), \mathcal{E})$ bipartite if:

- Set of vertices is $\mathcal{U} \cup \mathcal{V}$,
- Only edges between \mathcal{U} and \mathcal{V} : $\mathcal{E} \subset \mathcal{U} \times \mathcal{V}.$

Matching on a Bipartite graph

A matching is a set of edges with no common vertices.

Matching on a Bipartite graph

A matching is a set of edges with no common vertices.

Not a matching

Matching on a Bipartite graph

A matching is a set of edges with no common vertices.

A maximum matching

- v_t arrives along with its edges
- the algorithm can match it to a free vertex in $\ensuremath{\mathcal{U}}$
- the decision is final

- *v_t* arrives along with its edges
- the algorithm can match it to a free vertex in $\ensuremath{\mathcal{U}}$
- the decision is final

- v_t arrives along with its edges
- the algorithm can match it to a free vertex in $\ensuremath{\mathcal{U}}$
- the decision is final

- v_t arrives along with its edges
- \bullet the algorithm can match it to a free vertex in ${\cal U}$
- the decision is final

- v_t arrives along with its edges
- \bullet the algorithm can match it to a free vertex in ${\cal U}$
- the decision is final

Evaluating the performance

 $OPT(\mathcal{G}) = 3$

 $ALG(\mathcal{G}) = 2$

Definition

The competitive ratio is defined as:

$$C.R. = \min_{\mathcal{G}} \frac{\mathbb{E}[ALG(\mathcal{G})]}{OPT(\mathcal{G})}$$

Note that $0 \leq C.R. \leq 1,$ and the higher the better.

- Adversarial (Adv): ${\cal G}$ can be any graph, the vertices of ${\cal V}$ arrive in any order.
- **Random Order** (RO): *G* can be any graph, the vertices of *V* arrive in random order.
- **Stochastic** (IID): The vertices of V are drawn iid from a distribution. (precise definition given latter)

- Adversarial (Adv): ${\cal G}$ can be any graph, the vertices of ${\cal V}$ arrive in any order.
- Random Order (RO): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in random order.
- **Stochastic** (IID): The vertices of V are drawn iid from a distribution. (precise definition given latter)

 $C.R.(Adv) \leq C.R.(RO) \leq C.R.(IID)$

The simplest algorithm : GREEDY

Algorithm 1: GREEDY Algorithm

- 1 for $t = 1, .., |\mathcal{V}|$ do
- 2 Match v_t to any free neighbor;
- 3 end

Theorem

In the Adversarial setting,

$$C.R.(GREEDY) \geq \frac{1}{2}.$$

Proof: For every "missed" match, there is at least one "successful" match.

GREEDY with Adversarial Arrivals: A difficult situation

Using correlated randomness : RANKING

Algorithm 2: RANKING Algorithm

- 1 Draw a random permutation π ;
- 2 for $i=1,..,|\mathcal{U}|$ do
- 3 Assign to u_i rank $\pi(i)$;
- 4 end

```
5 for t = 1, ..., |\mathcal{V}| do
6 | Match v_t to its lowest ranked free neighbor;
```

```
7 end
```


Back to GREEDY's difficult situation

Theorem

In the Adversarial setting,

$$C.R.(RANKING) \ge 1 - \frac{1}{e}$$

Note : $1 - \frac{1}{e} \approx 0.63$

In our toolbox : Primal-Dual Analysis

Finding a maximum matching in the graph $\mathcal{G} = (\mathcal{U}, \mathcal{V}, \mathcal{E})$ is equivalent to finding a solution of the following I-LP:

$$\begin{split} \text{maximize} & \sum_{(u,v)\in\mathcal{E}} x_{uv} \\ \text{s.t.} & \sum_{v:(u,v)\in\mathcal{E}} x_{uv} \leq 1, \forall u \in \mathcal{U} \\ & \sum_{u:(u,v)\in\mathcal{E}} x_{uv} \leq 1, \forall v \in \mathcal{V} \\ & x_{uv} \in \{0,1\}, \forall (u,v) \in \mathcal{E} \end{split}$$

Matching linear program (P)

$$\begin{array}{l} \text{maximize } \sum_{(u,v)\in\mathcal{E}} x_{uv} \\ \text{s.t. } \sum_{v:(u,v)\in\mathcal{E}} x_{uv} \leq 1, \forall u \in \mathcal{U} \\ \sum_{u:(u,v)\in\mathcal{E}} x_{uv} \leq 1, \forall v \in \mathcal{V} \\ x_{uv} \geq 0, \forall (u,v) \in \mathcal{E} \end{array}$$

Note: On bipartite graphs, the value of the relaxed program and the original one match.

Dual to the Matching linear program (D)

$$\begin{split} \text{minimize} & \sum_{u \in \mathcal{U}} \alpha_u + \sum_{v \in \mathcal{V}} \beta_v \\ \text{s.t.} & \alpha_u + \beta_v \geq 1, \forall (u, v) \in \mathcal{E} \\ & \alpha_u \geq 0, \ \beta_v \geq 0, \ \forall u \in \mathcal{U}, v \in \mathcal{V} \end{split}$$

Note: This LP corresponds to the vertex cover problem.

Dual to the Matching linear
program (D)
minimize
$$\sum_{u \in \mathcal{U}} \alpha_u + \sum_{v \in \mathcal{V}} \beta_v$$

s.t. $\alpha_u + \beta_v \ge 1, \forall (u, v) \in \mathcal{E}$
 $\alpha_u \ge 0, \ \beta_v \ge 0$

Note : this LP corresponds to the vertex cover problem.

Algorithm 3: Primal Dual update for GREEDY

1 for $t = 1, ..., |\mathcal{V}|$ do 2 | if v has a free neighbor u then 3 | Add (u, v) to \mathcal{M} ; 4 | $\hat{x}_{uv} \leftarrow 1$; // primal update 5 | $\hat{\beta}_v \leftarrow \frac{1}{2}, \hat{\alpha}_u \leftarrow \frac{1}{2}$; // dual update 6 | end 7 end

$$\forall (u, v) \in \mathcal{E}, 2(\hat{\alpha}_u + \hat{\beta}_v) \ge 1 \implies (2\hat{\alpha}, 2\hat{\beta}) \text{ is an admissible sol. of } (D):$$
$$2\mathsf{ALG}(\mathcal{G}) = 2\sum_{(u,v)} \hat{x}_{uv}$$

$$2\mathsf{ALG}(\mathcal{G}) = 2 \sum_{(u,v)} \hat{x}_{uv}$$
$$= 2 \sum_{u \in \mathcal{U}} \hat{\alpha}_u + 2 \sum_{v \in \mathcal{V}} \hat{\beta}_v$$

$$2\mathsf{ALG}(\mathcal{G}) = 2 \sum_{(u,v)} \hat{x}_{uv}$$
$$= 2 \sum_{u \in \mathcal{U}} \hat{\alpha}_u + 2 \sum_{v \in \mathcal{V}} \hat{\beta}_v$$
$$\geq \sum_{u \in \mathcal{U}} \alpha_u^* + \sum_{v \in \mathcal{V}} \beta_v^*$$

$$2\mathsf{ALG}(\mathcal{G}) = 2\sum_{(u,v)} \hat{x}_{uv}$$
$$= 2\sum_{u \in \mathcal{U}} \hat{\alpha}_u + 2\sum_{v \in \mathcal{V}} \hat{\beta}_v$$
$$\geq \sum_{u \in \mathcal{U}} \alpha_u^* + \sum_{v \in \mathcal{V}} \beta_v^*$$
$$= \mathsf{OPT}(\mathcal{G})$$

Algorithm 4: Primal Dual update for RANKING

```
1 for u \in \mathcal{U} do
    Draw r_{\mu} \sim \mathcal{U}([0,1])
 2
 3 end
 4 for v = 1, ..., |\mathcal{V}| do
         u = \arg\min\{r_u | u \text{ unmatched}, (u, v) \in \mathcal{E}\};
 5
 6
        if u \neq \emptyset then
              Add (u, v) to \mathcal{M};
 7
              \hat{x}_{uv} \leftarrow 1;
 8
                                                                              // primal update
            \hat{\beta}_{v} \leftarrow (1 - g(r_{u}))/c, \hat{\alpha}_{u} \leftarrow g(r_{u})/c; // dual update
 9
         end
10
11 end
```

Lemma

If
$$g(x) = e^{x-1}$$
 and $c = 1 - \frac{1}{e}$, then, $\forall (u, v) \in \mathcal{E}$:
 $\mathbb{E}[\hat{\alpha}_u + \hat{\beta}_v] \ge 1$

$$\mathbb{E}[\mathsf{ALG}(G)] = \left(1 - \frac{1}{e}\right) \mathbb{E}\left[\sum_{u \in \mathcal{U}} \hat{\alpha}_u + \sum_{v \in \mathcal{V}} \hat{\beta}_v\right]$$
$$\geq \left(1 - \frac{1}{e}\right) \sum_{u \in \mathcal{U}} \alpha_u^* + \sum_{v \in \mathcal{V}} \beta_v^*$$
$$= \left(1 - \frac{1}{e}\right) \mathsf{OPT}(\mathcal{G})$$

- We can study algorithms on weighted graphs.
- Other problems: Online Set Cover, Online Caching...

GREEDY Random Order

Theorem

In the Random Order setting,

(

$$C.R.(GREEDY) \ge 1 - \frac{1}{e}$$

Note : $1 - \frac{1}{e} \approx 0.63$

Stochastic arrivals

Definition of $\mathcal{G}(N, N, c)$

• $|\mathcal{U}| = |\mathcal{V}| = N$

•
$$\mathbb{P}((u,v)\in\mathcal{E})=\frac{c}{N}$$

What is the performance of GREEDY on $\mathcal{G}(N, N, c)$?

In our toolbox : The Differential Equation Method

 M_t = number of matched vertices at t, $\mathbb{P}(v_{t+1} \text{ matched } | M_t) = 1 - (1 - \frac{c}{N})^{N-M_t}$ $= \mathbb{E}[M_{t+1} - M_t | M_t]$ Define the normalized random variable:

$$Z(au) = rac{M(N au)}{N}, \quad 0 \leq au \leq 1.$$

Define the normalized random variable:

$$Z(au) = rac{M(N au)}{N}, \quad 0 \leq au \leq 1.$$

We have:

$$\frac{\mathbb{E}[Z(\tau+1/N) - Z(\tau) \mid Z(\tau)]}{1/N} = 1 - \left(1 - \frac{c}{N}\right)^{N(1-Z(\tau))} \\ = 1 - e^{-c(1-Z(\tau))} + o(1).$$

Define the normalized random variable:

$$Z(au) = rac{M(N au)}{N}, \quad 0 \le au \le 1.$$

We have:

$$rac{\mathbb{E}[Z(au+1/N)-Z(au)\mid Z(au)]}{1/N} = 1 - \left(1-rac{c}{N}
ight)^{N(1-Z(au))} = 1 - e^{-c(1-Z(au))} + o(1).$$

As $N \to \infty$, we arrive at the differential equation:

$$\frac{dz(\tau)}{d\tau} = 1 - e^{-c(1-z(\tau))}.$$

Under the following conditions:

- the increments of the discrete random process are bounded a.s. by a constant.
- the function in the ODE is regular enough (Lipschitz), $(1 e^{-c(1-z(\tau))})$ in the example).
- the approximation between the expectation and the function is small enough.

Then the difference between the discrete process M_t and the solution of the ODE Nz(t/N) is o(N) w.h.p..[1]

$$\frac{\mathsf{GREEDY}\left(\mathcal{G}(N,N,c)\right)}{N} \underset{N \to +\infty}{\overset{\mathbb{P}}{\longrightarrow}} 1 - e^{\left(e^{-c} - 1\right)}$$

Theorem

The asymptotic C.R. of the GREEDY algorithm on any Erdos-Renyi graph is lower bounded as:

 $C.R.(GREEDY(\mathcal{G}(N, N, c))) \ge 0.837$

- GREEDY can be studied on a larger class of graphs (configuration model).
- Study random graph processes: find the size of the *k*-core of a graph, the largest independent set in a *d*-regular graph...

Introduced by Bollobás in 1980.

Consider two degree sequences

$$\left\{\begin{array}{ll}\mathsf{d}^U = (d_1^U, \dots, d_N^U) \in \mathbb{N}^N, \quad N \geq 1, \\ \mathsf{d}^V = (d_1^V, \dots, d_T^V) \in \mathbb{N}^T, \quad T \geq 1, \end{array} \right. \text{ s.t. } \sum_{i=1}^N d_i^U = \sum_{i=1}^T d_i^V.$$

Interpretation: d_i^U is the degree of the *i*-th vertex of U.

The associated bipartite configuration model $CM(d^U, d^V)$ is obtained through a uniform pairing of the half-edges.

Example: $d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$ and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Example:
$$d_1^U = 3, d_2^U = 2, d_3^U = 2, d_4^U = 1$$
 and $d_1^V = 3, d_2^V = 3, d_3^V = 2$.

Random degree sequences

• π_U, π_V : two proba on \mathbb{N} with expectations and finite 2nd moment.

$$\mu_U := \sum_{i \ge 0} i \pi_U(i) \quad \text{and} \quad \mu_V := \sum_{i \ge 0} i \pi_V(i).$$
• $d_1^U, \dots, d_N^U \stackrel{i.i.d.}{\sim} \pi_U, \qquad \sum_{i=1}^N d_i^U \approx \mu_U N.$
• $d_1^V, \dots, d_T^V \stackrel{i.i.d.}{\sim} \pi_V, \qquad \sum_{i=1}^T d_i^V \approx \mu_V T.$

Construction of configuration model : sequentially match half-edges.

Random degree sequences

• π_U, π_V : two proba on \mathbb{N} with expectations and finite 2nd moment.

$$\mu_U := \sum_{i \ge 0} i \pi_U(i) \quad \text{and} \quad \mu_V := \sum_{i \ge 0} i \pi_V(i).$$
• $d_1^U, \dots, d_N^U \stackrel{i.i.d.}{\sim} \pi_U, \qquad \sum_{i=1}^N d_i^U \approx \mu_U N.$
• $d_1^V, \dots, d_T^V \stackrel{i.i.d.}{\sim} \pi_V, \qquad \sum_{i=1}^T d_i^V \approx \mu_V T.$

Construction of configuration model : sequentially match half-edges.

1 - Compatibility condition: $\mu_U N = \mu_V T$.

Discard o(N) + o(T) unpaired half-edges in \mathcal{U} or \mathcal{V} .

Random degree sequences

• π_U, π_V : two proba on \mathbb{N} with expectations and finite 2nd moment.

$$\mu_U := \sum_{i \ge 0} i \pi_U(i) \quad \text{and} \quad \mu_V := \sum_{i \ge 0} i \pi_V(i).$$
• $d_1^U, \dots, d_N^U \stackrel{i.i.d.}{\sim} \pi_U, \qquad \sum_{i=1}^N d_i^U \approx \mu_U N.$
• $d_1^V, \dots, d_T^V \stackrel{i.i.d.}{\sim} \pi_V, \qquad \sum_{i=1}^T d_i^V \approx \mu_V T.$

Construction of configuration model : sequentially match half-edges.

1 - Compatibility condition: $\mu_U N = \mu_V T$.

Discard o(N) + o(T) unpaired half-edges in \mathcal{U} or \mathcal{V} .

2 - Sparsity condition: $\mu_U = o(T)$.

Discard o(T + N) multiple edges.

 \rightsquigarrow Sparse random bipartite graph $CM(d^U, d^V)$ with asymptotic degree sequences given by π_U and π_V .

Greedy Online Matching Algorithm on a Bipartite Configuration Model

 $\mathcal{M}_1 = \big\{\{u_1, v_1\}\big\}$

•

- .
- .
- .
 - •

- .
- .
- •

 $\mathcal{M}_1 = \{\{u_1, v_1\}\}$

- .
- .
- .
 - •

 $\mathcal{M}_2 = \left\{ \{u_1, v_1\}, \{u_2, v_2\} \right\}$

- •
- •
- .

 $\mathcal{M}_2 = \{\{u_1, v_1\}, \{u_2, v_2\}\}$

Our result

- $\mathcal{M}(s)$: matching obtained after seeing a proportion s of V-vertices.
- Generating series:

$$\phi_U(s) := \sum_{i \ge 0} \pi_U(i) s^i$$
 and $\phi_V(s) := \sum_{i \ge 0} \pi_V(i) s^i.$

Theorem

Let G be the unique solution of the following ordinary differential equation:

$$G'(s) = rac{1 - \phi_V \left(1 - rac{1}{\mu_U} \phi'_U \left(1 - G(s)
ight)
ight)}{rac{\mu_V}{\mu_U} \phi'_U (1 - G(s))}; \quad G(0) = 0.$$

Then, the following convergence holds in probability:

$$\frac{|\mathcal{M}(s)|}{N} \xrightarrow[N \to +\infty]{\mathbb{P}} 1 - \phi_U(1 - G(s)).$$

- Non-asymptotic bounds: $\mathcal{M}(s)/N$ concentrates around G (with additional assumptions on the tails of π_U and π_V).
- Generalization to weighted matching where each vertex u ∈ U has a capacity ω_u.

The *d*-regular case

Figure 1: Numerical computations (on Scilab, results are almost instantaneous) of GREEDY performances for d = 2 (blue), d = 3 (red), d = 4 (green), d = 6 (black) and d = 10 (magenta).

The *d*-regular case

Take $\pi_U = \pi_V = \delta_d$: all vertices have degree d.

Figure 2: Difference between the theoretical performances and simulated performances of the GREEDY algorithm on the *d*-regular graph (d = 4) on 5 independent runs, with N = 100, 1000, 10000.

GREEDY vs. RANKING

GREEDY asymptotically outperforms RANKING in some configuration models.

Example: the 2-regular graphs.

- In 2-regular graphs, if the incoming vertex has a free neighbor of degree 1 and another free neighbor of degree 2, Ranking picks the free vertex
 - of degree **2** with proba 2/3; [Greedy w.p. 1/2]
 - of degree 1 with proba 1/3 ; [Greedy w.p. 1/2]
- If v has degree 1, it was not picked before, hence its rank is high.
- Ranking takes the wrong decision more frequently

Thank you!

References

 Nathanaël Enriquez, Gabriel Faraud, Laurent Ménard, and Nathan Noiry. Depth first exploration of a configuration model. *arXiv preprint arXiv:1911.10083*, 2019.