Online Matching in Bipartite Graphs

Flore Sentenac

Motivations: Dynamic allocation

Ad - User allocation

Ad - User allocation

Problem definition

Matching on a Bipartite graph

Graph $\mathcal{G}=((\mathcal{U}, \mathcal{V}), \mathcal{E})$ bipartite if:

- Set of vertices is $\mathcal{U} \cup \mathcal{V}$,
- Only edges between \mathcal{U} and \mathcal{V} : $\mathcal{E} \subset \mathcal{U} \times \mathcal{V}$.

Matching on a Bipartite graph

A matching is a set of edges with no common vertices.

A matching

Matching on a Bipartite graph

Not a matching

Matching on a Bipartite graph

A maximum matching

Online Matching

Online Matching

Online Matching

Online Matching

Online Matching

Evaluating the performance

$\operatorname{OPT}(\mathcal{G})=3$

$\operatorname{ALG}(\mathcal{G})=2$

Competitive ratio

Definition

The competitive ratio is defined as:

$$
\text { C.R. }=\min _{\mathcal{G}} \frac{\mathbb{E}[\operatorname{ALG}(\mathcal{G})]}{\operatorname{OPT}(\mathcal{G})}
$$

Note that $0 \leq$ C.R. ≤ 1, and the higher the better.

The usual frameworks

- Adversarial (Adv): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in any order.
- Random Order (RO): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in random order.
- Stochastic (IID): The vertices of \mathcal{V} are drawn iid from a distribution. (precise definition given latter)

The usual frameworks

- Adversarial (Adv): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in any order.
- Random Order (RO): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in random order.
- Stochastic (IID): The vertices of \mathcal{V} are drawn iid from a distribution. (precise definition given latter)

$$
\text { C.R.(Adv) } \leq \text { C.R.(RO) } \leq \text { C.R.(IID) }
$$

The simplest algorithm : GREEDY

GREEDY

Algorithm 1: GREEDY Algorithm

1 for $t=1, \ldots,|\mathcal{V}|$ do
2 Match v_{t} to any free neighbor;
3 end

Theorem

In the Adversarial setting,

$$
\text { C.R. }(\text { GREEDY }) \geq \frac{1}{2}
$$

GREEDY with Adversarial Arrivals: A difficult situation

Using correlated

randomness: RANKING

RANKING

Algorithm 2: RANKING Algorithm

1 Draw a random permutation π;
2 for $i=1, . .,|\mathcal{U}|$ do
3 Assign to u_{i} rank $\pi(i)$;
4 end
5 for $t=1, . .,|\mathcal{V}|$ do
6 Match v_{t} to its lowest ranked free neighbor;
7 end

RANKING

$$
\begin{aligned}
& \text { U } \\
& \pi(1)=2 \\
& \pi(2)=3 \\
& \pi(3)=1
\end{aligned}
$$

RANKING

RANKING

RANKING

RANKING

RANKING

Back to GREEDY's difficult situation

RANKING

Theorem

In the Adversarial setting,

$$
\text { C.R. }(\text { RANKING }) \geq 1-\frac{1}{e} .
$$

Note: $1-\frac{1}{e} \approx 0.63$

In our toolbox : Primal-Dual Analysis

Maximum Matching problem as an LP

Finding a maximum matching in the graph $\mathcal{G}=(\mathcal{U}, \mathcal{V}, \mathcal{E})$ is equivalent to finding a solution of the following I-LP:

$$
\begin{aligned}
\operatorname{maximize} & \sum_{(u, v) \in \mathcal{E}} x_{u v} \\
\text { s.t. } & \sum_{v:(u, v) \in \mathcal{E}} x_{u v} \leq 1, \forall u \in \mathcal{U} \\
& \sum_{u:(u, v) \in \mathcal{E}} x_{u v} \leq 1, \forall v \in \mathcal{V} \\
& x_{u v} \in\{0,1\}, \forall(u, v) \in \mathcal{E}
\end{aligned}
$$

Maximum Matching problem as an LP

Matching linear program (P)

$$
\begin{aligned}
\operatorname{maximize} & \sum_{(u, v) \in \mathcal{E}} x_{u v} \\
\text { s.t. } & \sum_{v:(u, v) \in \mathcal{E}} x_{u v} \leq 1, \forall u \in \mathcal{U} \\
& \sum_{u:(u, v) \in \mathcal{E}} x_{u v} \leq 1, \forall v \in \mathcal{V} \\
& x_{u v} \geq 0, \forall(u, v) \in \mathcal{E}
\end{aligned}
$$

Note: On bipartite graphs, the value of the relaxed program and the original one match.

The dual problem

Dual to the Matching linear program (D)

$$
\begin{aligned}
\operatorname{minimize} & \sum_{u \in \mathcal{U}} \alpha_{u}+\sum_{v \in \mathcal{V}} \beta_{v} \\
\text { s.t. } & \alpha_{u}+\beta_{v} \geq 1, \forall(u, v) \in \mathcal{E} \\
& \alpha_{u} \geq 0, \beta_{v} \geq 0, \forall u \in \mathcal{U}, v \in \mathcal{V}
\end{aligned}
$$

Note: This LP corresponds to the vertex cover problem.

Matching on a Bipartite graph

Dual to the Matching linear program (D)

$$
\begin{aligned}
& \operatorname{minimize} \sum_{u \in \mathcal{U}} \alpha_{u}+\sum_{v \in \mathcal{V}} \beta_{v} \\
& \text { s.t. } \alpha_{u}+\beta_{v} \geq 1, \forall(u, v) \in \mathcal{E} \\
& \alpha_{u} \geq 0, \beta_{v} \geq 0
\end{aligned}
$$

Note : this LP corresponds to the vertex cover problem.

Overcomplicating the analysis of GREEDY

Algorithm 3: Primal Dual update for GREEDY		
1 for $t=1, \ldots,\|\mathcal{V}\|$ do		
2	if v has a free neighbor u then	
3	Add (u,v) to \mathcal{M};	
4	$\hat{x}_{u v} \leftarrow 1$;	// primal update
5	$\hat{\beta}_{v} \leftarrow \frac{1}{2}, \hat{\alpha}_{u} \leftarrow \frac{1}{2} ;$	// dual update
6	end	
7 end		

Overcomplicating the analysis of GREEDY

$$
\forall(u, v) \in \mathcal{E}, 2\left(\hat{\alpha}_{u}+\hat{\beta}_{v}\right) \geq 1 \Longrightarrow(2 \hat{\boldsymbol{\alpha}}, 2 \hat{\boldsymbol{\beta}}) \text { is an admissible sol. of }(D) \text { : }
$$

Overcomplicating the analysis of GREEDY

$$
\begin{gathered}
\forall(u, v) \in \mathcal{E}, 2\left(\hat{\alpha}_{u}+\hat{\beta}_{v}\right) \geq 1 \Longrightarrow(2 \hat{\boldsymbol{\alpha}}, 2 \hat{\boldsymbol{\beta}}) \text { is an admissible sol. of }(D): \\
2 \operatorname{ALG}(\mathcal{G})=2 \sum_{(u, v)} \hat{x}_{u v}
\end{gathered}
$$

Overcomplicating the analysis of GREEDY

$$
\begin{aligned}
\forall(u, v) \in \mathcal{E}, 2\left(\hat{\alpha}_{u}+\hat{\beta}_{v}\right) \geq 1 & \Longrightarrow(2 \hat{\boldsymbol{\alpha}}, 2 \hat{\boldsymbol{\beta}}) \text { is an admissible sol. of }(D): \\
2 \operatorname{ALG}(\mathcal{G}) & =2 \sum_{(u, v)} \hat{x}_{u v} \\
& =2 \sum_{u \in \mathcal{U}} \hat{\alpha}_{u}+2 \sum_{v \in \mathcal{V}} \hat{\beta}_{v}
\end{aligned}
$$

Overcomplicating the analysis of GREEDY

$$
\forall(u, v) \in \mathcal{E}, 2\left(\hat{\alpha}_{u}+\hat{\beta}_{v}\right) \geq 1 \Longrightarrow(2 \hat{\boldsymbol{\alpha}}, 2 \hat{\boldsymbol{\beta}}) \text { is an admissible sol. of }(D) \text { : }
$$

$$
\begin{aligned}
2 \operatorname{ALG}(\mathcal{G}) & =2 \sum_{(u, v)} \hat{x}_{u v} \\
& =2 \sum_{u \in \mathcal{U}} \hat{\alpha}_{u}+2 \sum_{v \in \mathcal{V}} \hat{\beta}_{v} \\
& \geq \sum_{u \in \mathcal{U}} \alpha_{u}^{*}+\sum_{v \in \mathcal{V}} \beta_{v}^{*}
\end{aligned}
$$

Overcomplicating the analysis of GREEDY

$$
\forall(u, v) \in \mathcal{E}, 2\left(\hat{\alpha}_{u}+\hat{\beta}_{v}\right) \geq 1 \Longrightarrow(2 \hat{\boldsymbol{\alpha}}, 2 \hat{\boldsymbol{\beta}}) \text { is an admissible sol. of }(D) \text { : }
$$

$$
\begin{aligned}
2 \operatorname{ALG}(\mathcal{G}) & =2 \sum_{(u, v)} \hat{x}_{u v} \\
& =2 \sum_{u \in \mathcal{U}} \hat{\alpha}_{u}+2 \sum_{v \in \mathcal{V}} \hat{\beta}_{v} \\
& \geq \sum_{u \in \mathcal{U}} \alpha_{u}^{*}+\sum_{v \in \mathcal{V}} \beta_{v}^{*} \\
& =\operatorname{OPT}(\mathcal{G})
\end{aligned}
$$

What about RANKING?

Algorithm 4: Primal Dual update for RANKING

```
1 for \(u \in \mathcal{U}\) do
2 Draw \(r_{U} \sim \mathcal{U}([0,1])\)
3 end
4 for \(v=1, . .,|\mathcal{V}|\) do
\(5 \quad u=\arg \min \left\{r_{u} \mid u\right.\) unmatched, \(\left.(u, v) \in \mathcal{E}\right\}\);
6 if \(u \neq \emptyset\) then
Add ( \(u, v\) ) to \(\mathcal{M}\);
\(\hat{x}_{u v} \leftarrow 1 ; \quad / /\) primal update
\(\hat{\beta}_{v} \leftarrow\left(1-g\left(r_{u}\right)\right) / c, \hat{\alpha}_{u} \leftarrow g\left(r_{u}\right) / c ; \quad / /\) dual update
10 end
11 end
```


Primal-Dual Analysis of RANKING

Lemma

If $g(x)=e^{x-1}$ and $c=1-\frac{1}{e}$, then, $\forall(u, v) \in \mathcal{E}$:

$$
\mathbb{E}\left[\hat{\alpha}_{u}+\hat{\beta}_{v}\right] \geq 1
$$

$$
\begin{aligned}
\mathbb{E}[\operatorname{ALG}(G)] & =\left(1-\frac{1}{e}\right) \mathbb{E}\left[\sum_{u \in \mathcal{U}} \hat{\alpha}_{u}+\sum_{v \in \mathcal{V}} \hat{\beta}_{v}\right] \\
& \geq\left(1-\frac{1}{e}\right) \sum_{u \in \mathcal{U}} \alpha_{u}^{*}+\sum_{v \in \mathcal{V}} \beta_{v}^{*} \\
& =\left(1-\frac{1}{e}\right) \operatorname{OPT}(\mathcal{G})
\end{aligned}
$$

When you've got a hammer...

- We can study algorithms on weighted graphs.
- Other problems: Online Set Cover, Online Caching...

GREEDY Random Order

GREEDY

Theorem

In the Random Order setting,

$$
\text { C.R. }(\text { GREEDY }) \geq 1-\frac{1}{e} .
$$

$$
\text { Note : } 1-\frac{1}{e} \approx 0.63
$$

Worse case for RANKING

Upper triangular matrix:

Stochastic arrivals

The Erdos-Renyi bipartite graph

Definition of $\mathcal{G}(N, N, c)$

- $|\mathcal{U}|=|\mathcal{V}|=N$
- $\mathbb{P}((u, v) \in \mathcal{E})=\frac{c}{N}$

What is the performance of GREEDY on $\mathcal{G}(N, N, c)$?

In our toolbox :
 The Differential Equation Method

$$
\begin{aligned}
& M_{t}=\text { number of matched vertices at } t \\
& \begin{aligned}
\mathbb{P}\left(v_{t+1} \text { matched } \mid M_{t}\right) & =1-\left(1-\frac{c}{N}\right)^{N-M_{t}} \\
& =\mathbb{E}\left[M_{t+1}-M_{t} \mid M_{t}\right]
\end{aligned}
\end{aligned}
$$

Turning the discrete process into an ODE

Define the normalized random variable:

$$
Z(\tau)=\frac{M(N \tau)}{N}, \quad 0 \leq \tau \leq 1 .
$$

Turning the discrete process into an ODE

Define the normalized random variable:

$$
Z(\tau)=\frac{M(N \tau)}{N}, \quad 0 \leq \tau \leq 1 .
$$

We have:

$$
\begin{aligned}
\frac{\mathbb{E}[Z(\tau+1 / N)-Z(\tau) \mid Z(\tau)]}{1 / N} & =1-\left(1-\frac{c}{N}\right)^{N(1-Z(\tau))} \\
& =1-e^{-c(1-Z(\tau))}+o(1)
\end{aligned}
$$

Turning the discrete process into an ODE

Define the normalized random variable:

$$
Z(\tau)=\frac{M(N \tau)}{N}, \quad 0 \leq \tau \leq 1 .
$$

We have:

$$
\begin{aligned}
\frac{\mathbb{E}[Z(\tau+1 / N)-Z(\tau) \mid Z(\tau)]}{1 / N} & =1-\left(1-\frac{c}{N}\right)^{N(1-Z(\tau))} \\
& =1-e^{-c(1-Z(\tau))}+o(1)
\end{aligned}
$$

As $N \rightarrow \infty$, we arrive at the differential equation:

$$
\frac{d z(\tau)}{d \tau}=1-e^{-c(1-z(\tau))}
$$

Wormald's Theorem

Under the following conditions:

- the increments of the discrete random process are bounded a.s. by a constant.
- the function in the ODE is regular enough (Lipschitz), ($1-e^{-c(1-z(\tau))}$ in the example).
- the approximation between the expectation and the function is small enough.

Then the difference between the discrete process M_{t} and the solution of the ODE $N z(t / N)$ is $o(N)$ w.h.p..[1]

Final result

$$
\frac{\operatorname{GREEDY}(\mathcal{G}(N, N, c))}{N} \underset{N \rightarrow+\infty}{\mathbb{P}} 1-e^{\left(e^{-c}-1\right)}
$$

Theorem

The asymptotic C.R. of the GREEDY algorithm on any Erdos-Renyi graph is lower bounded as:

$$
C . R .(\operatorname{GREEDY}(\mathcal{G}(N, N, c))) \geq 0.837
$$

When you've got a hammer..

- GREEDY can be studied on a larger class of graphs (configuration model).
- Study random graph processes: find the size of the k-core of a graph, the largest independent set in a d-regular graph...

The Configuration Model

Introduced by Bollobás in 1980.

Consider two degree sequences

$$
\left\{\begin{array}{ll}
\mathrm{d}^{U}=\left(d_{1}^{U}, \ldots, d_{N}^{U}\right) \in \mathbb{N}^{N}, & N \geq 1, \\
\mathrm{~d}^{V}=\left(d_{1}^{V}, \ldots, d_{T}^{V}\right) \in \mathbb{N}^{T}, & T \geq 1,
\end{array} \quad \text { s.t. } \quad \sum_{i=1}^{N} d_{i}^{U}=\sum_{i=1}^{T} d_{i}^{V} .\right.
$$

Interpretation: d_{i}^{U} is the degree of the i-th vertex of U.
The associated bipartite configuration model $\operatorname{CM}\left(\mathrm{d}^{U}, \mathrm{~d}^{V}\right)$ is obtained through a uniform pairing of the half-edges.

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

$$
\begin{aligned}
& u_{1} \leftarrow \\
& \rightarrow v_{1} \\
& u_{2} \bullet \\
& \rightarrow v_{2} \\
& u_{3} \bullet \\
& v_{3} \\
& u_{4}
\end{aligned}
$$

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

$\rightarrow v_{2}$
$u_{3} \bullet$
$\rangle v_{3}$
u_{4}

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

$\rightarrow v_{2}$
$u_{3} \bullet$
$\rangle v_{3}$
u_{4}

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

${ }_{0} v_{3}$

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

$u_{3} \bullet$
${ }_{0} v_{3}$
u_{4}

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

${ }_{0} v_{3}$

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

Definition

Example: $d_{1}^{U}=3, d_{2}^{U}=2, d_{3}^{U}=2, d_{4}^{U}=1$ and $d_{1}^{V}=3, d_{2}^{V}=3, d_{3}^{V}=2$.

Random degree sequences

- π_{U}, π_{V} : two proba on \mathbb{N} with expectations and finite 2 nd moment.

$$
\mu_{U}:=\sum_{i \geq 0} i \pi_{U}(i) \quad \text { and } \quad \mu_{V}:=\sum_{i \geq 0} i \pi_{V}(i)
$$

- $d_{1}^{U}, \ldots, d_{N}^{U} \stackrel{i . i . d .}{\sim} \pi_{U}, \quad \sum_{i=1}^{N} d_{i}^{U} \approx \mu_{U} N$.
- $d_{1}^{V}, \ldots, d_{T}^{V} \stackrel{i . i . d .}{\sim} \pi_{V}, \quad \sum_{i=1}^{T} d_{i}^{V} \approx \mu_{V} T$.

Construction of configuration model : sequentially match half-edges.

Random degree sequences

- π_{U}, π_{V} : two proba on \mathbb{N} with expectations and finite 2 nd moment.

$$
\mu_{U}:=\sum_{i \geq 0} i \pi_{U}(i) \quad \text { and } \quad \mu_{V}:=\sum_{i \geq 0} i \pi_{V}(i) .
$$

- $d_{1}^{U}, \ldots, d_{N}^{U} \stackrel{\text { i.i.d. }}{\sim} \pi_{U}, \quad \sum_{i=1}^{N} d_{i}^{U} \approx \mu_{U} N$.
- $d_{1}^{V}, \ldots, d_{T}^{V} \stackrel{\text { i.i.d. }}{\sim} \pi_{V}, \quad \sum_{i=1}^{T} d_{i}^{V} \approx \mu_{V} T$.

Construction of configuration model : sequentially match half-edges.
1- Compatibility condition: $\mu_{U} N=\mu_{V} T$.
Discard $o(N)+o(T)$ unpaired half-edges in \mathcal{U} or \mathcal{V}.

Random degree sequences

- π_{U}, π_{V} : two proba on \mathbb{N} with expectations and finite 2 nd moment.

$$
\mu_{U}:=\sum_{i \geq 0} i \pi_{U}(i) \quad \text { and } \quad \mu_{V}:=\sum_{i \geq 0} i \pi_{V}(i) .
$$

- $d_{1}^{U}, \ldots, d_{N}^{U} \stackrel{\text { i.i.d. }}{\sim} \pi_{U}, \quad \sum_{i=1}^{N} d_{i}^{U} \approx \mu_{U} N$.
- $d_{1}^{V}, \ldots, d_{T}^{V} \stackrel{\text { i.i.d. }}{\sim} \pi_{V}, \quad \sum_{i=1}^{T} d_{i}^{V} \approx \mu_{V} T$.

Construction of configuration model : sequentially match half-edges.
1-Compatibility condition: $\mu_{U} N=\mu_{V} T$.
Discard $o(N)+o(T)$ unpaired half-edges in \mathcal{U} or \mathcal{V}.
2 - Sparsity condition: $\mu_{U}=o(T)$.
Discard $o(T+N)$ multiple edges.
\rightsquigarrow Sparse random bipartite graph $\operatorname{CM}\left(d^{U}, d^{V}\right)$ with asymptotic degree sequences given by π_{U} and π_{V}.

Greedy Online Matching
Algorithm on a Bipartite Configuration Model

Definition with an example

$u_{1} \prec$
$u_{2} \leftarrow$
u_{3}

-

-

.

Definition with an example

${\underset{2}{1}}_{v_{1}}$
$u_{2} \leftarrow$
u_{3}
$3 \bullet$
-
.

Definition with an example

$u_{2} \leftarrow$
u_{3}

-

-

.

Definition with an example

$u_{2} \leftarrow$

$$
\mathcal{M}_{1}=\left\{\left\{u_{1}, v_{1}\right\}\right\}
$$

Definition with an example

$$
\mathcal{M}_{1}=\left\{\left\{u_{1}, v_{1}\right\}\right\}
$$

Definition with an example

$$
\mathcal{M}_{1}=\left\{\left\{u_{1}, v_{1}\right\}\right\}
$$

u_{3}

Definition with an example

$$
\mathcal{M}_{1}=\left\{\left\{u_{1}, v_{1}\right\}\right\}
$$

Definition with an example

$$
\mathcal{M}_{1}=\left\{\left\{u_{1}, v_{1}\right\}\right\}
$$

Definition with an example

$$
\mathcal{M}_{2}=\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{2}, v_{2}\right\}\right\}
$$

Definition with an example

Our result

- $\mathcal{M}(s)$: matching obtained after seeing a proportion s of V-vertices.
- Generating series:

$$
\phi_{U}(s):=\sum_{i \geq 0} \pi_{U}(i) s^{i} \quad \text { and } \quad \phi_{V}(s):=\sum_{i \geq 0} \pi_{V}(i) s^{i}
$$

Theorem

Let G be the unique solution of the following ordinary differential equation:

$$
G^{\prime}(s)=\frac{1-\phi_{V}\left(1-\frac{1}{\mu_{U}} \phi_{U}^{\prime}(1-G(s))\right)}{\frac{\mu_{V}}{\mu_{U}} \phi_{U}^{\prime}(1-G(s))} ; \quad G(0)=0 .
$$

Then, the following convergence holds in probability:

$$
\frac{|\mathcal{M}(s)|}{N} \underset{N \rightarrow+\infty}{\mathbb{P}} 1-\phi_{U}(1-G(s)) .
$$

And also...

- Non-asymptotic bounds: $\mathcal{M}(s) / N$ concentrates around G (with additional assumptions on the tails of π_{U} and π_{V}).
- Generalization to weighted matching where each vertex $u \in U$ has a capacity ω_{u}.

The d-regular case

Take $\pi_{U}=\pi_{V}=\delta_{d}$: all vertices have degree d.

Figure 1: Numerical computations (on Scilab, results are almost instantaneous) of GREEDY performances for $d=2$ (blue), $d=3$ (red), $d=4$ (green), $d=6$ (black) and $d=10$ (magenta).

The d-regular case

Take $\pi_{U}=\pi_{V}=\delta_{d}$: all vertices have degree d.

Figure 2: Difference between the theoretical performances and simulated performances of the GREEDY algorithm on the d-regular graph $(d=4)$ on 5 independent runs, with $N=100,1000,10000$.

A last result

GREEDY vs. RANKING

GREEDY asymptotically outperforms RANKING in some configuration models.

Example: the 2-regular graphs.

- In 2-regular graphs, if the incoming vertex has a free neighbor of degree 1 and another free neighbor of degree 2, Ranking picks the free vertex
- of degree 2 with proba 2/3; [Greedy w.p. 1/2]
- of degree $\mathbf{1}$ with proba $1 / 3$;
[Greedy w.p. 1/2]
- If v has degree 1 , it was not picked before, hence its rank is high.
- Ranking takes the wrong decision more frequently

Thank you!

References

[1] Nathanaël Enriquez, Gabriel Faraud, Laurent Ménard, and Nathan Noiry. Depth first exploration of a configuration model. arXiv preprint arXiv:1911.10083, 2019.

