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Ad - User allocation
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Ad - User allocation
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Problem definition
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Matching on a Bipartite graph

Graph G = ((U ,V), E) bipartite if:

• Set of vertices is U ∪ V,

• Only edges between U and V:

E ⊂ U × V.
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Matching on a Bipartite graph

A matching is a set of edges with

no common vertices.
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Matching on a Bipartite graph

A matching is a set of edges with

no common vertices.
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Online Matching

For t = 1, ..., |V|:
• vt arrives along with its edges

• the algorithm can match it to

a free vertex in U
• the decision is final
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Evaluating the performance
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Competitive ratio

Definition

The competitive ratio is defined as:

C.R. = min
G

E[ALG(G)]

OPT(G)

Note that 0 ≤ C.R. ≤ 1, and the higher the better.
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The usual frameworks

• Adversarial (Adv): G can be any graph, the vertices of V arrive in

any order.

• Random Order (RO): G can be any graph, the vertices of V arrive

in random order.

• Stochastic (IID): The vertices of V are drawn iid from a

distribution. (precise definition given latter)
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The usual frameworks

• Adversarial (Adv): G can be any graph, the vertices of V arrive in

any order.

• Random Order (RO): G can be any graph, the vertices of V arrive

in random order.

• Stochastic (IID): The vertices of V are drawn iid from a

distribution. (precise definition given latter)

C.R.(Adv) ≤ C.R.(RO) ≤ C.R.(IID)
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The simplest algorithm :

GREEDY
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GREEDY

Algorithm 1: GREEDY Algorithm

1 for t = 1, .., |V| do

2 Match vt to any free neighbor;

3 end

Theorem

In the Adversarial setting,

C.R.(GREEDY) ≥ 1

2
.
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Proof : For every ”missed” match,

there is at least one ”successful”

match.
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GREEDY with Adversarial Arrivals: A difficult situation

t
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Using correlated

randomness : RANKING
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RANKING

Algorithm 2: RANKING Algorithm

1 Draw a random permutation π;

2 for i = 1, .., |U| do

3 Assign to ui rank π(i);

4 end

5 for t = 1, .., |V| do

6 Match vt to its lowest ranked free neighbor;

7 end
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RANKING

U V

π(1) = 2

π(2) = 3

π(3) = 1
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Back to GREEDY’s difficult situation

t
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RANKING

Theorem

In the Adversarial setting,

C.R.(RANKING) ≥ 1− 1

e
.

Note : 1− 1
e ≈ 0.63
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In our toolbox :

Primal-Dual Analysis
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Maximum Matching problem as an LP

Finding a maximum matching in the graph G = (U ,V, E) is equivalent to

finding a solution of the following I-LP:

maximize
∑

(u,v)∈E

xuv

s.t.
∑

v :(u,v)∈E

xuv ≤ 1,∀u ∈ U

∑
u:(u,v)∈E

xuv ≤ 1,∀v ∈ V

xuv ∈ {0, 1},∀(u, v) ∈ E
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Maximum Matching problem as an LP

Matching linear program (P)

maximize
∑

(u,v)∈E

xuv

s.t.
∑

v :(u,v)∈E

xuv ≤ 1,∀u ∈ U

∑
u:(u,v)∈E

xuv ≤ 1,∀v ∈ V

xuv ≥ 0,∀(u, v) ∈ E

Note: On bipartite graphs, the value of the relaxed program and the

original one match.
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The dual problem

Dual to the Matching linear program (D)

minimize
∑
u∈U

αu +
∑
v∈V

βv

s.t. αu + βv ≥ 1,∀(u, v) ∈ E
αu ≥ 0, βv ≥ 0, ∀u ∈ U , v ∈ V

Note: This LP corresponds to the vertex cover problem.
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Matching on a Bipartite graph

Dual to the Matching linear

program (D)

minimize
∑
u∈U

αu +
∑
v∈V

βv

s.t. αu + βv ≥ 1,∀(u, v) ∈ E
αu ≥ 0, βv ≥ 0

Note : this LP corresponds to the

vertex cover problem.
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Overcomplicating the analysis of GREEDY

Algorithm 3: Primal Dual update for GREEDY

1 for t = 1, .., |V| do

2 if v has a free neighbor u then

3 Add (u, v) to M;

4 x̂uv ← 1 ; // primal update

5 β̂v ← 1
2 ,α̂u ← 1

2 ; // dual update

6 end

7 end
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Overcomplicating the analysis of GREEDY

∀(u, v) ∈ E , 2(α̂u + β̂v ) ≥ 1 =⇒ (2α̂, 2β̂) is an admissible sol. of (D):
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Overcomplicating the analysis of GREEDY

∀(u, v) ∈ E , 2(α̂u + β̂v ) ≥ 1 =⇒ (2α̂, 2β̂) is an admissible sol. of (D):

2ALG(G) = 2
∑
(u,v)

x̂uv

= 2
∑
u∈U

α̂u + 2
∑
v∈V

β̂v

≥
∑
u∈U

α∗u +
∑
v∈V

β∗v

= OPT(G)
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What about RANKING ?

Algorithm 4: Primal Dual update for RANKING

1 for u ∈ U do

2 Draw ru ∼ U([0, 1])

3 end

4 for v = 1, .., |V| do

5 u = arg min{ru|u unmatched, (u, v) ∈ E};
6 if u 6= ∅ then

7 Add (u, v) to M;

8 x̂uv ← 1 ; // primal update

9 β̂v ← (1− g(ru)) /c , α̂u ← g(ru)/c ; // dual update

10 end

11 end
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Primal-Dual Analysis of RANKING

Lemma

If g(x) = ex−1 and c = 1− 1
e , then, ∀(u, v) ∈ E :

E[α̂u + β̂v ] ≥ 1

E[ALG(G )] =

(
1− 1

e

)
E

[∑
u∈U

α̂u +
∑
v∈V

β̂v

]

≥
(

1− 1

e

)∑
u∈U

α∗u +
∑
v∈V

β∗v

=

(
1− 1

e

)
OPT(G)
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When you’ve got a hammer...

• We can study algorithms on weighted graphs.

• Other problems: Online Set Cover, Online Caching...
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GREEDY Random Order

U V

1π(1) = 2

2π(2) = 3

π(3) = 1 3

⇔

V U

π(1) = 21

π(2) = 32

3 π(3) = 1
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GREEDY

Theorem

In the Random Order setting,

C.R.(GREEDY) ≥ 1− 1

e
.

Note : 1− 1
e ≈ 0.63
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Worse case for RANKING

Upper triangular matrix:

0

1

U

V

33



Stochastic arrivals
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The Erdos-Renyi bipartite graph

Definition of G(N,N, c)

• |U| = |V| = N

• P ((u, v) ∈ E) = c
N

What is the performance of GREEDY on G(N,N, c) ?
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In our toolbox :

The Differential Equation

Method

36



t + 1

Mt = number of matched vertices at t,

P(vt+1 matched |Mt) = 1− (1− c

N
)N−Mt

= E[Mt+1 −Mt |Mt ]
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Turning the discrete process into an ODE

Define the normalized random variable:

Z (τ) =
M(Nτ)

N
, 0 ≤ τ ≤ 1.
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Define the normalized random variable:
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1/N
= 1−
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1− c

N
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Turning the discrete process into an ODE

Define the normalized random variable:

Z (τ) =
M(Nτ)

N
, 0 ≤ τ ≤ 1.

We have:

E[Z (τ + 1/N)− Z (τ) | Z (τ)]

1/N
= 1−

(
1− c

N

)N(1−Z(τ))

= 1− e−c(1−Z(τ)) + o(1).

As N →∞, we arrive at the differential equation:

dz(τ)

dτ
= 1− e−c(1−z(τ)).
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Wormald’s Theorem

Under the following conditions:

• the increments of the discrete random process are bounded a.s. by a

constant.

• the function in the ODE is regular enough (Lipschitz),

(1− e−c(1−z(τ)) in the example).

• the approximation between the expectation and the function is small

enough.

Then the difference between the discrete process Mt and the solution of

the ODE Nz(t/N) is o(N) w.h.p..[1]
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Final result

GREEDY (G(N,N, c))

N
P−→

N→+∞
1− e(e−c−1)

Theorem

The asymptotic C.R. of the GREEDY algorithm on any Erdos-Renyi

graph is lower bounded as:

C .R.(GREEDY (G(N,N, c))) ≥ 0.837
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When you’ve got a hammer..

• GREEDY can be studied on a larger class of graphs (configuration

model).

• Study random graph processes: find the size of the k-core of a

graph, the largest independent set in a d-regular graph...
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The Configuration Model

Introduced by Bollobás in 1980.

Consider two degree sequences{
dU = (dU

1 , . . . , d
U
N ) ∈ NN , N ≥ 1,

dV = (dV
1 , . . . , d

V
T ) ∈ NT , T ≥ 1,

s.t.
N∑
i=1

dU
i =

T∑
i=1

dV
i .

Interpretation: dU
i is the degree of the i-th vertex of U.

The associated bipartite configuration model CM(dU , dV ) is obtained

through a uniform pairing of the half-edges.
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Definition

Example: dU
1 = 3, dU

2 = 2, dU
3 = 2, dU

4 = 1 and dV
1 = 3, dV

2 = 3, dV
3 = 2.
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Random degree sequences

• πU , πV : two proba on N with expectations and finite 2nd moment.

µU :=
∑
i≥0

iπU(i) and µV :=
∑
i≥0

iπV (i).

• dU
1 , . . . , d

U
N

i.i.d.∼ πU ,
N∑
i=1

dU
i ≈ µUN.

• dV
1 , . . . , d

V
T

i.i.d.∼ πV ,
T∑
i=1

dV
i ≈ µVT .

Construction of configuration model : sequentially match half-edges.

1 - Compatibility condition: µUN = µVT .

Discard o(N) + o(T ) unpaired half-edges in U or V.

2 - Sparsity condition: µU = o(T ).

Discard o(T + N) multiple edges.

 Sparse random bipartite graph CM(dU , dV ) with asymptotic degree

sequences given by πU and πV .
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Definition with an example
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Definition with an example
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Our result

• M(s): matching obtained after seeing a proportion s of V -vertices.

• Generating series:

φU(s) :=
∑
i≥0

πU(i)s i and φV (s) :=
∑
i≥0

πV (i)s i .

Theorem

Let G be the unique solution of the following ordinary differential

equation:

G ′(s) =
1− φV

(
1− 1

µU
φ′U (1− G (s))

)
µV

µU
φ′U(1− G (s))

; G (0) = 0.

Then, the following convergence holds in probability:

|M(s)|
N

P−→
N→+∞

1− φU(1− G (s)).

47



And also...

• Non-asymptotic bounds: M(s)/N concentrates around G (with

additional assumptions on the tails of πU and πV ).

• Generalization to weighted matching where each vertex u ∈ U has

a capacity ωu.
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The d-regular case

Take πU = πV = δd : all vertices have degree d .

Figure 1: Numerical computations (on Scilab, results are almost

instantaneous) of GREEDY performances for d = 2 (blue), d = 3 (red), d = 4

(green), d = 6 (black) and d = 10 (magenta).
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The d-regular case

Take πU = πV = δd : all vertices have degree d .

Figure 2: Difference between the theoretical performances and simulated

performances of the GREEDY algorithm on the d-regular graph (d = 4) on 5

independent runs, with N = 100, 1000, 10000.
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A last result

GREEDY vs. RANKING

GREEDY asymptotically outperforms RANKING in some configuration

models.

Example: the 2-regular graphs.

• In 2-regular graphs, if the incoming vertex has a free neighbor of

degree 1 and another free neighbor of degree 2, Ranking picks the

free vertex

• of degree 2 with proba 2/3; [Greedy w.p. 1/2]

• of degree 1 with proba 1/3 ; [Greedy w.p. 1/2]

• If v has degree 1, it was not picked before, hence its rank is high.

• Ranking takes the wrong decision more frequently
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Thank you!
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