Online Matching in Random Bipartite Graphs

Flore Sentenac, joint work with Nathan Noiry, Vianney Perchet, Laurent Ménard and Matthieu Lerasle.

Motivation: Dynamic allocation

Ad - User allocation

Ad - User allocation

Problem definition

Matching on a Bipartite graph

Graph $\mathcal{G}=((\mathcal{U}, \mathcal{V}), \mathcal{E})$ bipartite if:

- Set of vertices is $\mathcal{U} \cup \mathcal{V}$,
- Only edges between \mathcal{U} and \mathcal{V} : $\mathcal{E} \subset \mathcal{U} \times \mathcal{V}$.

Matching on a Bipartite graph

A matching is a set of edges with no common vertices.

A matching

Matching on a Bipartite graph

Not a matching

Matching on a Bipartite graph

A maximum matching

Online Matching

Online Matching

Online Matching

Online Matching

Online Matching

Evaluating the performance

$\operatorname{OPT}(\mathcal{G})=3$

$\operatorname{ALG}(\mathcal{G})=2$

Competitive ratio

Definition

The competitive ratio is defined as:

$$
\text { C.R. }=\min _{\mathcal{G}} \frac{\mathbb{E}[\operatorname{ALG}(\mathcal{G})]}{\operatorname{OPT}(\mathcal{G})}
$$

Note that $0 \leq$ C.R. ≤ 1, and the higher the better.

The usual frameworks

- Adversarial (Adv): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in any order.
- Random Order (RO): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in random order.
- Stochastic (IID): The vertices of \mathcal{V} are drawn iid from a distribution. (precise definition given latter)

The usual frameworks

- Adversarial (Adv): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in any order.
- Random Order (RO): \mathcal{G} can be any graph, the vertices of \mathcal{V} arrive in random order.
- Stochastic (IID): The vertices of \mathcal{V} are drawn iid from a distribution. (precise definition given latter)

$$
\text { C.R.(Adv) } \leq \text { C.R.(RO) } \leq \text { C.R.(IID) }
$$

GREEDY in the Adversarial framework

Algorithm 1: GREEDY Algorithm

1 for $t=1, \ldots,|\mathcal{V}|$ do
2 Match v_{t} to any free neighbor;
3 end

Theorem

In the Adversarial setting,

$$
\text { C.R.(GREEDY) } \geq \frac{1}{2}
$$

RANKING in the Adversarial framework

Algorithm 2: RANKING Algorithm

1 Draw a random permutation π;
2 for $i=1, . .,|\mathcal{U}|$ do
3 Assign to u_{i} rank $\pi(i)$;
4 end
5 for $t=1, . .,|\mathcal{V}|$ do
6 Match v_{t} to its lowest ranked free neighbor;
7 end

Theorem (Karp, Vazirani, Vazirani, 1990)

In the Adversarial setting,

$$
\text { C.R. }(\text { RANKING }) \geq 1-\frac{1}{e}
$$

Note : $1-\frac{1}{e} \approx 0.63$

Known IID

Model : There is a distribution over k fixed known types from which the incoming vertices are drawn i.i.d..
\mathcal{U}

A first naive solution :

- Compute an optimal matching on the expected graph (assume integral expected arrival rates fro simplicity)
- Match the first incoming vertex of each type according to that matching.

U

Guide
$\mathcal{U} \quad \mathcal{V}$

Constructed Matching

$$
C R=1-\frac{1}{e}
$$

A better one: Compute an alternative matching on the expected graph and use it as a graph in case of a second arrival.

Theorem (Jaillet, Lu, 2013)

In the Known IID model, the 2-suggested matching algorithms as a CR lower bounded as:

$$
\text { C.R. } \geq 0.702 .
$$

Main issues :

- CR upper bounded by 0.823 ,
- No flexibility in the model.

Online Matching in

Random Graphs: The 1-D Geometric Model

1-D Random Geometric graph

Model : Random geometric graph $\operatorname{Geom}(\mathcal{U}, \mathcal{V}, c)$:

- the points in \mathcal{U} are N points drawn iid uniformly in $[0,1]$,
- the points in \mathcal{V} are N points drawn iid uniformly in $[0,1]$,
- there is an edge between $u \in \mathcal{U}$ and $v \in \mathcal{V}$ iif:

$$
|u-v| \leq \frac{c}{N}
$$

Motivation: the position of the points \sim features.

Offline Maximum matching

Proposition

The algorithm matching free vertices from left to right produces a maximum matching.

Alternative formulation: the algorithm creates no augmenting path.

Proof: Consider the augmenting path of shortest length.

- No edges in the matching cross:

- Points on both sides of the path have decreasing coordinates:
- No position possible for the end point of the path:

The point is matched by the algorithm.

There exists a path of shorter length.

Size of the Maximum Matching

Step 1: Modify the graph generating process.
Random geometric graph Geom' $(\mathcal{U}, \mathcal{V}, c)$:

- \mathcal{U} and \mathcal{V} drawn from a Poisson Point Process of intensity 1 in $[0, N]$,
- there is an edge between $u \in \mathcal{U}$ and $v \in \mathcal{V}$ iif: $|u-v| \leq c$.

Expected matching sizes in the two model

With $\gamma^{*}(c, N)$ and $M^{*}(c, N)$ the expected sizes of the matchings in the original and modified models:

$$
\left|\gamma^{*}(c, N)-M^{*}(c, N)\right| \leq 4(1+\sqrt{N \ln N}) .
$$

Step 2: Generate the graph together with the matching.
Three situations possible:

- Successful match!

\Longrightarrow generate next points in \mathcal{U} and \mathcal{V}.
- Last point in \mathcal{U} too far behind.

\Longrightarrow generate next point in \mathcal{U}.
- Last point in \mathcal{V} too far behind.

\Longrightarrow generate next point in \mathcal{V}.

The size of the gap between the two last generated points at time t is a random walk $\psi(t)$ s.t. :

$$
\psi(t+1)-\psi(t) \sim\left\{\begin{array}{l}
\operatorname{Lap}(0,1) \text { if }|\psi(t)| \leq c \\
\operatorname{Exp}(1) \text { if } \psi(t) \leq-c \\
-\operatorname{Exp}(1) \text { if } \psi(t) \geq c
\end{array}\right.
$$

Proposition

$$
\lim _{N \rightarrow \infty} \frac{M^{*}(c, N)}{N}=\frac{c}{c+\frac{1}{2}}
$$

Online Matching in the 1-D Geometric Model

Match to the closest point algorithm

The incoming point is matched to its closest available neighbor.

Our Result

Theorem (S., Noiry, Perchet, Ménard, Lerasle, 2022)

Let $\kappa(c, N)$ be the size of the matching obtained by match to the closest point algorithm on $G(\mathcal{X}, \mathcal{Y}, c / N)$. We have

$$
\kappa(c, N) \xrightarrow[N \rightarrow+\infty]{\mathrm{P}} 1-\int_{0}^{+\infty} f(x, 1) d x
$$

with $f(x, t)$ the solution of the following differential equation

$$
\begin{aligned}
\frac{\partial f(x, t)}{\partial t}= & -\min (x, 2 c) f(x, t)-\int_{0}^{+\infty} \frac{\min \left(x^{\prime}, 2 c\right) f\left(x^{\prime}, t\right) f(x, t)}{\int_{0}^{+\infty} f\left(x^{\prime}, t\right) d x^{\prime}} d x^{\prime} \\
& +\frac{1}{\int_{0}^{+\infty} f\left(x^{\prime}, t\right) d x^{\prime}} \int_{0}^{x} \min \left(x^{\prime}, 2 c\right) f\left(x^{\prime}, t\right) f\left(x-x^{\prime}, t\right) d x^{\prime}
\end{aligned}
$$

with the following initial conditions

$$
f(x, 0)=e^{-x} .
$$

Experimental results

Simulations with $c=4$.

Figure 1: Difference between the theoretical performances and simulated performances of the GREEDY algorithm on the geometric graph $(c=4)$ on 5 independent runs, with $N=100$.

Key to obtaining the PDEs: Finding the right quantities to track.
The matching algorithm is studied on a modified graph:

Figure 2: Graph Rounding

We track the value of the gaps between the remaining free vertices
N_{t} is the number of free vertices at iteration t.
$u_{t}(i)$ is the coordinate of the $i^{\text {th }}$ free vertex, with the (vertices enumerated according to their coordinates).
For $\ell \in\left[N^{3 / 2}\right]$, define

$$
F_{N}(\ell, t):=\left|\left\{\left.N\left(u_{t}(i+1)-u_{t}(i)\right)=\frac{\ell}{\sqrt{N}} \right\rvert\, i \in\left[N_{t}\right]\right\}\right|
$$

On an example

$$
F_{9}(1,0)=3
$$

$$
F_{9}(2,0)=3
$$

$$
F_{9}(4,0)=F_{9}(5,0)=F_{9}(6,0)=1
$$

For all other $\ell \in[30]:$

$$
F_{9}(\ell, 0)=0
$$

$$
\begin{aligned}
& F_{9}(1,1)=1 \\
& F_{9}(2,1)=4
\end{aligned}
$$

$$
F_{9}(4,1)=F_{9}(5,1)=F_{9}(6,1)=1
$$

For all other $\ell \in$ [30]:

$$
F_{9}(\ell, 1)=0
$$

\rightarrow Related to the number of matched vertices at time t,

$$
M(t)=N_{0}-\sum_{\ell} F_{N}(\ell, t) .
$$

\rightarrow There exists Φ such that:

$$
\begin{aligned}
\mathbb{E}\left[F_{N}(\ell, t+1)-F_{N}(\ell, t) \mid \mathcal{F}_{t}\right]=\Phi_{N}\left(F_{N}(0, t), \ldots, F_{N}\left(N^{3 / 2},\right.\right. & t)) \\
& +o(1)
\end{aligned}
$$

Differences can be seen as discrete derivatives...

The differential equation method

For all $s \in(0,1)$, w.h.p.:

$$
\left|\sum_{\ell} \frac{F(\ell,\lfloor s T\rfloor)}{N}-f_{N}(\ell, s)\right| \leq O\left(N^{-1 / 8}\right)
$$

with $\forall \ell$:

$$
\frac{\partial f_{N}(\ell, t)}{\partial t}=\Phi_{N}\left(f_{N}(0, t), \ldots, \ldots, f_{N}\left(N^{3 / 2}, t\right), \ell\right) .
$$

with the initial conditions:

$$
f_{N}(\ell, 0)=\frac{1}{\sqrt{N}} e^{-\frac{\ell}{\sqrt{N}}} .
$$

Differential equations for random processes and random graphs, Wormald ; 1995.

Last step

For any $t \in[0,1]$, we have:

$$
\left\|f(., t)-f_{N}(., t)\right\|_{L_{1}} \leq \frac{10}{\sqrt{N}}
$$

with f the function defined in the theorem.

The Configuration Model

The Configuration Model

Introduced by Bollobás in 1980.

Consider two degree sequences $\mathrm{d}^{U}=\left(d_{1}^{U}, \ldots, d_{N}^{U}\right), \mathrm{d}^{\vee}=\left(d_{1}^{V}, \ldots, d_{T}^{V}\right)$.
The associated bipartite configuration model $\operatorname{CM}\left(\mathrm{d}^{U}, \mathrm{~d}^{V}\right)$ is obtained through a uniform pairing of the half-edges.

${ }_{0} v_{3}$

Our result

- $\mathcal{M}(s)$: matching obtained after seeing a proportion s of V-vertices.
- Generating series:

$$
\phi_{U}(s):=\sum_{i \geq 0} \pi_{U}(i) s^{i} \quad \text { and } \quad \phi_{V}(s):=\sum_{i \geq 0} \pi_{V}(i) s^{i}
$$

Theorem (S.,Noiry, Perchet, 2021)

Let G be the unique solution of the following ordinary differential equation:

$$
G^{\prime}(s)=\frac{1-\phi_{V}\left(1-\frac{1}{\mu_{U}} \phi_{U}^{\prime}(1-G(s))\right)}{\frac{\mu_{V}}{\mu_{U}} \phi_{U}^{\prime}(1-G(s))} ; \quad G(0)=0 .
$$

Then, the following convergence holds in probability:

$$
\frac{|\mathcal{M}(s)|}{N} \underset{N \rightarrow+\infty}{\mathbb{P}} 1-\phi_{U}(1-G(s)) .
$$

The d-regular case

Take $\pi_{U}=\pi_{V}=\delta_{d}$: all vertices have degree d.

Figure 3: Difference between the theoretical performances and simulated performances of the GREEDY algorithm on the d-regular graph $(d=4)$ on 5 independent runs, with $N=100,1000,10000$.

Thank you!

Evolution Law

Define:
$M_{N}\left(\ell_{-}, \ell_{+}, t\right): \left.=\left\lvert\,\left\{\left(u_{t}(i+1)-u_{t}(i)\right)=\frac{\ell_{-}}{N^{3 / 2}}\right.$ and $\left.\left(u_{t}(i+1)-u_{t}(i)\right)=\frac{\ell_{+}}{N^{3 / 2}}\right\}\right. \right\rvert\,$.
And \mathcal{F}_{t} the filtration associated with the values $\left(F_{N}\left(\ell, t^{\prime}\right)\right)_{\ell, t^{\prime} \leq t}$ up to time t.

Lemma

For all $t \in[N]$, for all $\ell_{-}, \ell_{+} \in\left(N^{3 / 2}\right)^{2}$,

$$
\begin{aligned}
\mathbb{E}\left[M_{N}\left(\ell_{-}, \ell_{+}, t\right) \mid \mathcal{F}_{t}\right]= & \mathbb{1}\left\{\ell_{-} \neq \ell_{+}\right\} \frac{F_{N}\left(\ell_{+}, t\right) F_{N}\left(\ell_{-}, t\right)}{N_{t}-1} \\
& +\mathbb{1}\left\{\ell_{-}=\ell_{+}\right\} \frac{F_{N}\left(\ell_{-}, t\right)\left(F_{N}\left(\ell_{+}, t\right)-1\right)}{N_{t}-1}
\end{aligned}
$$

