Online Matching in Random Bipartite Graphs

Flore Sentenac, joint work with Nathan Noiry, Vianney Perchet, Laurent Ménard
and Matthieu Lerasle.
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Problem definition



Matching on a Bipartite graph

U Vv
le o1
Graph G = (U, V), €) bipartite if:
e Set of vertices is U/ UV,
e Only edges between U/ and V: 20 o2

ECUXV.
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Matching on a Bipartite graph
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A matching is a set of edges with
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no common vertices.
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Online Matching
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Fort=1,..,|V|
e v; arrives along with its edges
e the algorithm can match it to
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e the decision is final
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Evaluating the performance

u v u v
1 1 le ® 1
2@ ° 2 2@ ® 2
3 3 3@ 3

OPT(G) =3 ALG(G) =2



Competitive ratio

Definition
The competitive ratio is defined as:
EIALG(9)]

CR. = mgln OPT(3)

Note that 0 < C.R. <1, and the higher the better.
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The usual frameworks

e Adversarial (Adv): G can be any graph, the vertices of V arrive in
any order.

e Random Order (RO): G can be any graph, the vertices of ) arrive
in random order.

e Stochastic (IID): The vertices of V are drawn iid from a
distribution. (precise definition given latter)
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The usual frameworks

e Adversarial (Adv): G can be any graph, the vertices of V arrive in
any order.

e Random Order (RO): G can be any graph, the vertices of V arrive
in random order.

e Stochastic (IID): The vertices of V are drawn iid from a
distribution. (precise definition given latter)

C.R.(Adv) < C.R.(RO) < C.R.(IID)
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GREEDY in the Adversarial framework

Algorithm 1: GREEDY Algorithm
1 fort=1,..,|V| do
2 Match v; to any free neighbor;

3 end

Theorem

In the Adversarial setting,

C.R.(GREEDY) >

N =
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RANKING in the Adversarial framework

Algorithm 2: RANKING Algorithm

Draw a random permutation ;
for i =1,..,|U| do
‘ Assign to u; rank 7(/);
end
fort=1,..,|V| do
‘ Match v; to its lowest ranked free neighbor;

N o s W N =

end

Theorem (Karp, Vazirani, Vazirani, 1990)

In the Adversarial setting,

C.R.(RANKING) > 1 — .
€

Note : 1 — 1 ~0.63
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Model : There is a distribution over k fixed known types from which the
incoming vertices are drawn i.i.d..

U

type 1 type 2 type k
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A first naive solution :

e Compute an optimal matching on the expected graph (assume
integral expected arrival rates fro simplicity)
e Match the first incoming vertex of each type according to that

matching.
u E[V] u 1%
1 ® ® 3
® ® 2 ® ® 2
3 ® ®?2
Guide Constructed Matching
CR=1-1+
e
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A better one : Compute an alternative matching on the expected graph
and use it as a graph in case of a second arrival.

Theorem (Jaillet, Lu, 2013)

In the Known IID model, the 2-suggested matching algorithms as a CR
lower bounded as:
C.R. > 0.702.

Main issues :

e CR upper bounded by 0.823,
e No flexibility in the model.
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Online Matching in
Random Graphs: The 1-D
Geometric Model



1-D Random Geometric graph

Model : Random geometric graph Geom(U,V, c):

e the points in U/ are N points drawn iid uniformly in [0, 1],
e the points in V are N points drawn iid uniformly in [0, 1],
e there is an edge between u € U and v € V iif:

|lu—v| <

Motivation: the position of the points ~ features.
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Offline Maximum matching

Proposition
The algorithm matching free vertices from left to right produces a
maximum matching.

u
0 1
1%
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Alternative formulation: the algorithm creates no augmenting path.

N

Proof: Consider the augmenting path of shortest length.

e No edges in the matching cross: W

e Points on both sides of the path have decreasing coordinates: ?wwv

e No position possible for the end point of the path:

NV AW

The point is matched by the There exists a path of shorter
algorithm. length.
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Size of the Maximum Matching

Step 1: Modify the graph generating process.
Random geometric graph Geom'(U, V, c):

e U/ and V drawn from a Poisson Point Process of intensity 1 in [0, V],
e there is an edge between u € U and v € Viif: ju—v| <c.

NN
~ A

~&(1)

Expected matching sizes in the two model

With v*(c, N) and M*(c, N) the expected sizes of the matchings in the
original and modified models:

(¢, N) — M*(c, N)| < 4(1 + V/N'n N).
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Step 2: Generate the graph together with the matching.
Three situations possible:

e Successful match !

J
—> generate next points in U/ and V.

e Last point in U too far behind.

A

L4

— generate next point in U.

e Last point in V too far behind.

N |

L4 A 4

—> generate next point in V.
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The size of the gap between the two last generated points at time t is a
random walk #(t) s.t. :

Lap(0,1) if [¢(t)] < ¢
P(t+1) —9(t) ~ ¢ Exp(1) if ¢(t) < —c
—BExp(1) if (t) > ¢

Proposition
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Online Matching in the
1-D Geometric Model



Match to the closest point algorithm

The incoming point is matched to its closest available neighbor.

u
0 1
\ By
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Our Result

Theorem (S., Noiry, Perchet, Ménard, Lerasle, 2022)

Let x(c, N) be the size of the matching obtained by match to the closest
point algorithm on G(X,Y,c/N). We have

k(c, N) —P 1 /(:OC f(x,1)dx

N—+o0
with f(x, t) the solution of the following differential equation

Of (x, t)

+oo ¢ ! /
a — _ min(x, 2)f(x, t)—/ min(x’,2¢)f(x, t)f(x,t
0

f0+°o f(x', t)dx

)dX/
1 * H / / / /
+ m : min(x",2¢c)f(x, t)f(x — x', t)dx
0 ;

with the following initial conditions

f(x,0) = e
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Experimental results

Simulations with ¢ = 4.
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Figure 1: Difference between the theoretical performances and simulated
performances of the GREEDY algorithm on the geometric graph (¢ =4) on 5
independent runs, with N = 100.

27



Key to obtaining the PDEs: Finding the right quantities to track.

The matching algorithm is studied on a modified graph:

x Y u -y w ua vy

— — — —

Poissonization Rounding Discard Gluing

— ] T—e ——————> — 4 ——> — 5 ——

No ~Poi(N)
=

un3/2 }
N3TZ
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Figure 2: Graph Rounding



We track the value of the gaps between the remaining free vertices
N; is the number of free vertices at iteration t.

us(i) is the coordinate of the ith free vertex, with the (vertices
enumerated according to their coordinates).

For ¢ € [N3/2], define

Fn(l,t) == HN(ut(i +1) —w(i)) =

i€ [Nt]}

)

L
VN
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On an example

Fo(1,1) = 1

Fo(2,1) = 4

Fo(4,0) = Fo(5,0) = Fo(6,0) = 1 Fo(4,1) = Fo(5,1) = Fo(6,1) =1

e For all other ¢ € [30]:
For all other ¢ € [30]: or all other [30]
Fo(?,0) = Fo(f,1) =0
9(£,0) =0 o(4,1)
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— Related to the number of matched vertices at time t,

M(t) = No — > Fun(L,t).
4

— There exists ® such that:

E[Fn(f, t + 1) — Fy(l, t) | Fo] = o (FN(o, t),..., Fn(N*2, t))

+o(1).

Differences can be seen as discrete derivatives...
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The differential equation method

For all s € (0,1), w.h.p.:

> FEBT) e )| < o),

L

with V¢:

8/’7\/(6, f) . 3/2
T—CDN(fN(Oat)v"'v"'va(N 7t)’£)'

with the initial conditions:

fu(0,0) = %Ne—

<

Differential equations for random processes and random graphs,
Wormald ; 1995.
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Last step

For any t € [0, 1], we have:

10

I[ (., t) = (s t) | < T

with f the function defined in the theorem.
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The Configuration Model



The Configuration Model

Introduced by Bollobds in 1980.
Consider two degree sequences dV = (dY,...,dY), d¥V = (d,...,d¥).

The associated bipartite configuration model CM(dY,d") is obtained
through a uniform pairing of the half-edges.

ul{/‘ \\\\\
\\) .
UQ.(
» 02
U3(
> U3
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Our result

e M(s): matching obtained after seeing a proportion s of V-vertices.
e Generating series:

ou(s) ==Y mu()s  and  oy(s):= 3 m(i)s'

i>0 i>0
Theorem (S.,Noiry, Perchet, 2021)

Let G be the unique solution of the following ordinary differential
equation:

1— v (1- 26, (1-G(s)
Boa-GE)

Hu

G'(s) = G(0) = 0.

Then, the following convergence holds in probability:

MEN 2, 34— 6(s)).

N N—+o00
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The d-regular case

Take my = my = d4: all vertices have degree d.

Figure 3: Difference between the theoretical performances and simulated
performances of the GREEDY algorithm on the d-regular graph (d = 4) on 5

independent runs, with N = 100, 1000, 10000.
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Thank youl!



Evolution Law

Define:

Mu(O—, bs, t) == H(ut(mr 1) — (i) = % vl (ot 1) — () = /\f;ﬂ }' .

And F; the filtration associated with the values (Fn(¢,t')), . <, up to
time t.

Lemma

For all t € [N], for all £_, ¢, € (N3/2)2,

Fn(ly, t)Fu(l—,t)
Nt — 1

Fn(e—, t)(Fn(ls,t) — 1)
N, —1 ’

E |:MN(57,E+, t)

ft} —1{_ £}

FA{e_ =04}
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