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Motivation: Dynamic

allocation
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Ad - User allocation
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Ad - User allocation
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Problem definition
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Matching on a Bipartite graph

Graph G = ((U ,V), E) bipartite if:

• Set of vertices is U ∪ V,

• Only edges between U and V:

E ⊂ U × V.
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Matching on a Bipartite graph

A matching is a set of edges with

no common vertices.
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Matching on a Bipartite graph

A matching is a set of edges with

no common vertices.
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Online Matching

For t = 1, ..., |V|:
• vt arrives along with its edges

• the algorithm can match it to

a free vertex in U
• the decision is final
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Evaluating the performance
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Competitive ratio

Definition

The competitive ratio is defined as:

C.R. = min
G

E[ALG(G)]

OPT(G)

Note that 0 ≤ C.R. ≤ 1, and the higher the better.
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The usual frameworks

• Adversarial (Adv): G can be any graph, the vertices of V arrive in

any order.

• Random Order (RO): G can be any graph, the vertices of V arrive

in random order.

• Stochastic (IID): The vertices of V are drawn iid from a

distribution. (precise definition given latter)
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The usual frameworks

• Adversarial (Adv): G can be any graph, the vertices of V arrive in

any order.

• Random Order (RO): G can be any graph, the vertices of V arrive

in random order.

• Stochastic (IID): The vertices of V are drawn iid from a

distribution. (precise definition given latter)

C.R.(Adv) ≤ C.R.(RO) ≤ C.R.(IID)
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GREEDY in the Adversarial framework

Algorithm 1: GREEDY Algorithm

1 for t = 1, .., |V| do

2 Match vt to any free neighbor;

3 end

Theorem

In the Adversarial setting,

C.R.(GREEDY) ≥ 1

2
.
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RANKING in the Adversarial framework

Algorithm 2: RANKING Algorithm

1 Draw a random permutation π;

2 for i = 1, .., |U| do

3 Assign to ui rank π(i);

4 end

5 for t = 1, .., |V| do

6 Match vt to its lowest ranked free neighbor;

7 end

Theorem (Karp, Vazirani, Vazirani, 1990)

In the Adversarial setting,

C.R.(RANKING) ≥ 1− 1

e
.

Note : 1− 1
e ≈ 0.63
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Known IID

Model : There is a distribution over k fixed known types from which the

incoming vertices are drawn i.i.d..

UU

type 1 type 2

. . .

type k
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A first naive solution :

• Compute an optimal matching on the expected graph (assume

integral expected arrival rates fro simplicity)

• Match the first incoming vertex of each type according to that

matching.

U E[V]
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Guide

U V
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Constructed Matching

CR = 1− 1

e
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A better one : Compute an alternative matching on the expected graph

and use it as a graph in case of a second arrival.

Theorem (Jaillet, Lu, 2013)

In the Known IID model, the 2-suggested matching algorithms as a CR

lower bounded as:

C.R. ≥ 0.702.

Main issues :

• CR upper bounded by 0.823,

• No flexibility in the model.
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Online Matching in

Random Graphs: The 1-D

Geometric Model



1-D Random Geometric graph

Model : Random geometric graph Geom(U ,V, c):

• the points in U are N points drawn iid uniformly in [0, 1],

• the points in V are N points drawn iid uniformly in [0, 1],

• there is an edge between u ∈ U and v ∈ V iif:

|u − v | ≤ c

N
.

0 1
U

V

Motivation: the position of the points ∼ features.
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Offline Maximum matching

Proposition

The algorithm matching free vertices from left to right produces a

maximum matching.
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Alternative formulation: the algorithm creates no augmenting path.

Proof: Consider the augmenting path of shortest length.

• No edges in the matching cross:

• Points on both sides of the path have decreasing coordinates:

• No position possible for the end point of the path:

The point is matched by the

algorithm.

There exists a path of shorter

length.
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Size of the Maximum Matching

Step 1: Modify the graph generating process.

Random geometric graph Geom’(U ,V, c):

• U and V drawn from a Poisson Point Process of intensity 1 in [0,N],

• there is an edge between u ∈ U and v ∈ V iif: |u − v | ≤ c .

0 N

U

V

∼ E(1)

Expected matching sizes in the two model

With γ∗(c ,N) and M∗(c ,N) the expected sizes of the matchings in the

original and modified models:

|γ∗(c ,N)−M∗(c ,N)| ≤ 4(1 +
√
N lnN).
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Step 2: Generate the graph together with the matching.

Three situations possible:

• Successful match !

U
V

=⇒ generate next points in U and V.

• Last point in U too far behind.

U
V

=⇒ generate next point in U .

• Last point in V too far behind.

U
V

=⇒ generate next point in V.

22



The size of the gap between the two last generated points at time t is a

random walk ψ(t) s.t. :

ψ(t + 1)− ψ(t) ∼


Lap(0, 1) if |ψ(t)| ≤ c

Exp(1) if ψ(t) ≤ −c
−Exp(1) if ψ(t) ≥ c

Proposition

lim
N→∞

M∗(c ,N)

N
=

c

c + 1
2

.
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Online Matching in the

1-D Geometric Model



Match to the closest point algorithm

The incoming point is matched to its closest available neighbor.

0 1
U

V
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Our Result

Theorem (S., Noiry, Perchet, Ménard, Lerasle, 2022)

Let κ(c ,N) be the size of the matching obtained by match to the closest

point algorithm on G (X ,Y, c/N). We have

κ(c ,N)
P−−−−−→

N→+∞
1−

∫ +∞

0

f (x , 1)dx

with f (x , t) the solution of the following differential equation

∂f (x , t)

∂t
=−min(x , 2c)f (x , t)−

∫ +∞

0

min(x ′, 2c)f (x ′, t)f (x , t)∫ +∞
0

f (x ′, t)dx ′
dx ′

+
1∫ +∞

0
f (x ′, t)dx ′

∫ x

0

min(x ′, 2c)f (x ′, t)f (x − x ′, t)dx ′

with the following initial conditions

f (x , 0) = e−x .
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Experimental results

Simulations with c = 4.

Figure 1: Difference between the theoretical performances and simulated

performances of the GREEDY algorithm on the geometric graph (c = 4) on 5

independent runs, with N = 100.
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Key to obtaining the PDEs: Finding the right quantities to track.

The matching algorithm is studied on a modified graph:

0
1

X Y

Poissonization

N0 ∼Poi(N)

N0 = N + 1

0
1

U Y

Rounding

bUc :={
buN3/2c
N3/2

}
0

1

bUc Y

Discard

0
1

Ũ Y

Gluing

0

Figure 2: Graph Rounding
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We track the value of the gaps between the remaining free vertices

Nt is the number of free vertices at iteration t.

ut(i) is the coordinate of the i th free vertex, with the (vertices

enumerated according to their coordinates).

For ` ∈ [N3/2], define

FN(`, t) :=

∣∣∣∣{N (ut(i + 1)− ut(i)) =
`√
N

∣∣∣∣ i ∈ [Nt ]

}∣∣∣∣ ,
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On an example

F9(1, 0) = 3

F9(2, 0) = 3

F9(4, 0) = F9(5, 0) = F9(6, 0) = 1

For all other ` ∈ [30]:

F9(`, 0) = 0

−→

F9(1, 1) = 1

F9(2, 1) = 4

F9(4, 1) = F9(5, 1) = F9(6, 1) = 1

For all other ` ∈ [30]:

F9(`, 1) = 0
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→ Related to the number of matched vertices at time t,

M(t) = N0 −
∑
`

FN(`, t).

→ There exists Φ such that:

E[FN(`, t + 1)− FN(`, t) | Ft ] = ΦN

(
FN(0, t), . . . ,FN(N3/2, t)

)
+ o(1).

Differences can be seen as discrete derivatives...
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The differential equation method

For all s ∈ (0, 1), w.h.p.:∣∣∣∣∑
`

F (`, bsT c)
N

− fN(`, s)

∣∣∣∣ ≤ O(N−1/8),

with ∀`:

∂fN(`, t)

∂t
= ΦN

(
fN(0, t), . . . , . . . , fN(N3/2, t), `

)
.

with the initial conditions:

fN(`, 0) =
1√
N
e
− √̀

N .

Differential equations for random processes and random graphs,

Wormald ; 1995.
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Last step

For any t ∈ [0, 1], we have:

|| f (., t)− fN(., t) ||L1≤
10√
N
.

with f the function defined in the theorem.
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The Configuration Model



The Configuration Model

Introduced by Bollobás in 1980.

Consider two degree sequences dU = (dU
1 , . . . , d

U
N ), dV = (dV

1 , . . . , d
V
T ).

The associated bipartite configuration model CM(dU , dV ) is obtained

through a uniform pairing of the half-edges.

u1

u2

u3

u4

v1

v2

v3
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Our result

• M(s): matching obtained after seeing a proportion s of V -vertices.

• Generating series:

φU(s) :=
∑
i≥0

πU(i)s i and φV (s) :=
∑
i≥0

πV (i)s i .

Theorem (S.,Noiry, Perchet, 2021)

Let G be the unique solution of the following ordinary differential

equation:

G ′(s) =
1− φV

(
1− 1

µU
φ′U (1− G (s))

)
µV

µU
φ′U(1− G (s))

; G (0) = 0.

Then, the following convergence holds in probability:

|M(s)|
N

P−→
N→+∞

1− φU(1− G (s)).
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The d-regular case

Take πU = πV = δd : all vertices have degree d .

Figure 3: Difference between the theoretical performances and simulated

performances of the GREEDY algorithm on the d-regular graph (d = 4) on 5

independent runs, with N = 100, 1000, 10000.
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Thank you!
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Evolution Law

Define:

MN(`−, `+, t) :=

∣∣∣∣{(ut(i + 1)− ut(i)) =
`−
N3/2

and (ut(i + 1)− ut(i)) =
`+
N3/2

}∣∣∣∣ .
And Ft the filtration associated with the values (FN(`, t ′))`,t′≤t up to

time t.

Lemma

For all t ∈ [N], for all `−, `+ ∈ (N3/2)2,

E
[
MN(`−, `+, t)

∣∣∣∣Ft

]
=1{`− 6= `+}

FN(`+, t)FN(`−, t)

Nt − 1

+ 1{`− = `+}
FN(`−, t)(FN(`+, t)− 1)

Nt − 1
.
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