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Why robust estimation?

Example: Xi,..., X, s N (u,0?). Optimal estimator: ji = % S X

What if an adversary replaces one of the X;'s with an outlier?
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Contamination strongly impacts fi: the estimator [ is not robust.

Now consider the empirical median t € Med(X1, ..., X,).
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Contamination hardly affects ji: the estimator f1 is robust.

Goal: Find estimators that are robust to contamination.
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Why Local differential Privacy?

Setting: Let Xi,..., X, i p.

The Xi,..., X, are sensitive: they should not be disclosed to the statistician.
Idea: Add noise to each X;! If X;=x, draw Z; ~ Q(-|X=x).
Here, @ denotes some Markov transition kernel.

Goal:(Informal) Ensure that from Z;, one “cannot recover” X;.
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Local Differential Privacy

Definition: Fix oo € (0,1). A Markov transition kernel Q : X — Z is a
(non-interactive) a-locally differentially private mechanism if

sup  sup Q(B|x)
Beo(Z) xx'eX Q(B|X/)

< e (%)

Intuition: Let x,x” € X'. From the observation Z; ~ Q(:|X;), consider

Ho: Xi=x vs Hp:Xi=x

The likelihood-ratio test 1 {%(é,“i)) > 1} is minimax optimal.

But under (%), it has Type-l + Type-ll error € [17(% 1].

(Random guessing has Type-I + Type-ll error = 1.)
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Our setting

d
Let Pd—{(pl,...,pd)eﬂ%i‘ ij_l} for d > 3.
=1

Privacy level a € (0, 1), Corruption level: ¢ € (0, 135)-

Underlying distribution p € P4 to estimate, Q is chosen by the statistician.

@ Collect niid batches X, ..., X" of size k: X' = [X{,.. X’] s pk.

@ Privatize each XJ’ to define YJ-i ~ Q( . |XJ’)

© An adversary replaces ne batches Y’ by arbitrary outliers Y.

The resulting dataset is denoted as (Z%,...,Z").
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With contamination only
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With contamination only

@ Collect niid batches X', ..., X" of size k: X' = [X{, e ,Xi] i p®k.
© An adversary replaces ne batches X' by arbitrary outliers Xi.

The resulting dataset is denoted as (Y71,..., Y3).

(Theorem (Qiao and Valiant, 2017)

There exists p such that w.p. > 1— O(e™ ),
d €

supTVp, ) < nk+ A

There exists a constant ¢ > 0 s.t. for all estimator p, w.p. > O(e~9)

d €
sup TV(p,p) > ¢ — 4+ — 5.
sup (p,P) {\/ T \/E}

7/27



Computational tractability

Theorem (Jain and Orlitsky, 2020)
There exists a polynomial time algorithm p s.t. w.p. > 1— O(e™9),

PS5+ = oRT0)
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With privatization only
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Randomized response mechanism

d ;
d
o p=(p1,---,pd)st. d.pi=1 X1,..., %X, ~ p.
j=1

@ Privacy level a.

The following mechanism is a-LDP and minimax optimal for o € (0, 1).

(RAPPOR mechanism )
Input: X € [d] and « € (0,1).

. _ 1
Deflne A= eo/211"

Output: Z € {0,1}? with independent coordinates such that

. . Tx—; with probability 1 — A
vield]: Z(@j)= y ’
j€ldl U) {1 —1x—; otherwise.
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Randomized response mechanism

We have: P
. e —1 1
ElZOl= eO‘/2—|—1pj+ 1+ ex/2
Define
a/2
. e+ 11 1
PIi= qarz 1 n%:]Z,— 1+ e/2
1 n

If a < 1, we have: J
Ef|lp— N —.
(18 — pll] adn

Ng
1N”.

In comparison:

|

Effective sample size ~ a2n/d.

1 n
;;XI*P
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This estimation rate is minimax optimal (up to constants).

(Theorem (Duchi, Jordan, and Wainwright, 2014)
For any a-LDP mechanism Q,

d
infsupE||[p — Zmin(l,—=].
e 6= pl,] Nm'n( ,aﬁ>
If p is estimated through the RAPPOR algorithm and o € [0, 1], then:

d
ay/n’

infsupEE|[p— p],] <
P p
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Our setting (reminder)
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Main theorem

;
Theorem

e If n> O(d), there is a polynomial time algorithm p such that

with probability at least 1 — O(e™1).

@ There exists a constant ¢ > 0 s.t. for all estimator p, all a-LDP
privatization channels @, w.p. > O(e~9)

e /d d
sup TV(p,p) > c \/7—1— .
sup (p;P) {a PR ﬁnk}
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Rates comparison

@ n batches of k samples — nk samples.

@ Privacy level .

@ contamination level €.

Constraint Upper bound Lower bound
Contamination+LDP d_ | ey/log(l/e) [ 4 d_ 4 ¢ [d
(Our bound) av/ nk Vk a? | av/nk Vk\ o?
d d
LDP only Tk Tk
€+/log(1l/e
Contamination only A/ ni;( + % nik + \/LE
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Related work

@ acharya2021robust; Cheu, Smith, and Ullman, 2021: Consider contamination
after privacy in various settings including discrete distributions. Nearly
matching upper and lower bounds.

o Li, Berrett, and Yu, 2022 Consider contamination before privacy in various
settings.

o Liu et al., 2021: (X;); iid from Subgaussian distribution. The data (X;); are
contaminated before privatization.

None of them consider batches.
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Contamination before vs. after privacy

oo [ @ .....
- = Estimation error caused by contami-
B e o) = nation multiplied by vd/a.
.o —@_> .o
B Estimation error caused by contami-
= e nation unchanged.
7@_, .o
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Algorithm

The algorithm proceeds in two mains steps:

@ Privatization step: Using the RAPPOR mechanism.
@ Robust estimation step: estimate the auxiliary quantity

q(j) :=E,[Z(j)| Z is a good sample] for all j € [d].

Deduce p from §.
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Privatization step

q(j) =E, [Z(j)| Z is a good sample] for all j € [d].

One has: p = :uﬂ (q - 1+1e("]]')'

Given an estimator §, one can provide the estimator p through

. e*+11|, 1
pj = G — .

e —1 1+ e~
/
=1/«

Thus, the error on p is controlled by the error on §:,

n 1 n
> 1B - pil = EZVU - qjl.
=1 j=1
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Robust estimation step

The algorithm is based on an iterative filtering of the batches.

@ We define for a collection of batches B’ a contamination rate 5.
@ For each batch b, we define its corruption score €.

@ Until the contamination rate is low, batches are eliminated based on the
corruption score.
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(Iterative Filtering Mechanism

Input: Corruption level ¢, Batch collection B.

Initialize B’ + B
While contamination rate of B’, 75/ > 200:
Vb € B’ compute corruption score €,
B° <« {en Batches with top corruption scores}
Define €tot = Do €b
While D, cgo €b > €rot/2:
Delete a batch from B?, picking batch b with probability
proportional to &

Output: Collection with low contamination rate B’
(et i
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Under some technical assumptions:

@ If the contamination rate of a collection B’ is smaller than a constant, then
the empirical mean of the frequencies of each coordinate in B’, gg/ satisfies:

. d
sup > |G/ () — gl S 6\[{~

SQ[d] jes

@ Any collection of "good" batches has a low contamination rate.

© Each deletion step of the iterative filtering procedure deletes an adversarial
batch w.p. at least 3/4.
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Contamination rate

For simplicity, assume we want to estimate the first coordinate q;.

Define for each batch b and each collection and batches B':

k
1 Z . Z
E b(]. and qu 1 : ‘B/| qb(]. .

beB’

Introduce the following estimates of the second order moment:

\7:;r18, (b) := Z [ab(l) - 631(1)}2,

beB’

Vary (gs:(1)) := 63/(1)(1; 63/(1))'

The proxy contamination rate is defined through:

B! ‘— W Var]_ (aB/(l)) —Varl (b) .

k

B ‘
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Corruption scores

The proxy contamination scores are defined as:
~ R 2
eb = |Gp(1) — qB,(l)} .
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Lower Bound

For any a-LDP mechanism @, there exit two probability vectors p,q € Py s.t.:

evd
lp—qlli 2 —=A1

av'k

and

TV(Qp®K, Qq¥¥) < e.
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Thank you !
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