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Why robust estimation?

Example: X1, . . . ,Xn
iid∼ N (µ, σ2). Optimal estimator: µ̂ = 1

n

∑n
i=1 Xi .

What if an adversary replaces one of the Xi ’s with an outlier?

µ̂
Contamination strongly impacts µ̂: the estimator µ̂ is not robust.

Now consider the empirical median µ̃ ∈ Med(X1, . . . ,Xn).

µ̃

Contamination hardly affects µ̃: the estimator µ̃ is robust.

Goal: Find estimators that are robust to contamination.
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Why Local differential Privacy?

Setting: Let X1, . . . ,Xn
iid∼ p.

The X1, . . . ,Xn are sensitive: they should not be disclosed to the statistician.

Idea: Add noise to each Xi ! If Xi =x , draw Zi ∼ Q( · |X =x).

Here, Q denotes some Markov transition kernel.

Goal:(Informal) Ensure that from Zi , one “cannot recover” Xi .
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Local Differential Privacy

Definition: Fix α ∈ (0, 1). A Markov transition kernel Q : X → Z is a

(non-interactive) α-locally differentially private mechanism if

sup
B∈σ(Z)

sup
x,x′∈X

Q(B|x)
Q(B|x ′)

≤ eα. (∗)

Intuition: Let x , x ′ ∈ X . From the observation Zi ∼ Q(·|Xi ), consider

H0 : Xi =x vs H1 : Xi =x ′.

The likelihood-ratio test 1
{

Q(Zi |x′)
Q(Zi |x) > 1

}
is minimax optimal.

But under (∗), it has Type-I + Type-II error ∈
[
1−α, 1

]
.

(Random guessing has Type-I + Type-II error = 1.)
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Our setting

Let Pd =

{(
p1, . . . , pd

)
∈ Rd

+

∣∣∣ d∑
j=1

pj = 1
}

for d ≥ 3.

Privacy level α ∈ (0, 1), Corruption level: ε ∈
(
0, 1

100

)
.

Underlying distribution p ∈ Pd to estimate, Q is chosen by the statistician.

1 Collect n iid batches X 1, . . . ,X n of size k : X i =
[
X i

1, . . . ,X
i
k

]
iid∼ p⊗k .

2 Privatize each X i
j to define Y i

j ∼ Q
(
·
∣∣X i

j

)
.

3 An adversary replaces nε batches Y i by arbitrary outliers Ỹ i .

The resulting dataset is denoted as (Z 1, . . . ,Z n).
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Our setting

5 / 27



With contamination only
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With contamination only

1 Collect n iid batches X 1, . . . ,X n of size k : X i =
[
X i

1, . . . ,X
i
k

]
iid∼ p⊗k .

2 An adversary replaces nε batches X i by arbitrary outliers X̃i .

The resulting dataset is denoted as (Y1, . . . ,Yn).

Theorem (Qiao and Valiant, 2017)
There exists p̂ such that w.p. ≥ 1− O(e−d),

sup
p

TV (p, p̂) .

√
d

nk
+

ε√
k
.

There exists a constant c > 0 s.t. for all estimator p̂, w.p. ≥ O(e−d)

sup
p∈Pd

TV (p, p̂) ≥ c

{√
d

nk
+

ε√
k

}
.
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Computational tractability

Theorem (Jain and Orlitsky, 2020)
There exists a polynomial time algorithm p̂ s.t. w.p. ≥ 1− O(e−d),

TV (p, p̂) .

√
d

nk
+

ε√
k

√
log(1/ε).
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With privatization only
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Randomized response mechanism

p = (p1, . . . , pd) s.t.
d∑

j=1
pj = 1, X1, . . . ,Xn

iid∼ p.

Privacy level α.

The following mechanism is α-LDP and minimax optimal for α ∈ (0, 1).

RAPPOR mechanism

Input: X ∈ [d ] and α ∈ (0, 1).

Define λ = 1
eα/2+1 .

Output: Z ∈ {0, 1}d with independent coordinates such that

∀j ∈ [d ] : Z (j) =

{
1X=j with probability 1− λ,
1− 1X=j otherwise.
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Randomized response mechanism

We have:

E [Z (j)] =
eα/2 − 1
eα/2 + 1

pj +
1

1+ eα/2
.

Define

p̂j :=
eα/2 + 1
eα/2 − 1

1
n

∑
i∈[n]

Zi −
1

1+ eα/2

 .
If α� 1, we have:

E [‖p̂ − p‖1] ≈
d

α
√
n
.

In comparison:

E

[∥∥∥∥1n
n∑

i=1

Xi − p

∥∥∥∥
1

]
≈
√

d

n
.

Effective sample size ∼ α2n/d .
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This estimation rate is minimax optimal (up to constants).

Theorem (Duchi, Jordan, and Wainwright, 2014)
For any α-LDP mechanism Q,

inf
p̂
sup
p

E
[∥∥p̂ − p

∥∥
1

]
& min

(
1,

d

α
√
n

)
.

If p̂ is estimated through the RAPPOR algorithm and α ∈ [0, 1], then:

inf
p̂
sup
p

E
[∥∥p̂ − p

∥∥
1

]
.

d

α
√
n
.
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Our setting (reminder)

1 Collect n iid batches X 1, . . . ,X n of size k : X i =
[
X i

1, . . . ,X
i
k

]
iid∼ p⊗k .

2 Privatize each X i
j to define Y i

j ∼ Q
(
·
∣∣X i

j

)
.

3 An adversary replaces nε batches Y i by arbitrary outliers Ỹ i .
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Main theorem

Theorem

If n ≥ O (d), there is a polynomial time algorithm p̂ such that

sup
p∈Pd

TV (p, p̂) .
ε

α

√
d ln(1/ε)

k
+

d

α
√
nk

with probability at least 1− O(e−d).

There exists a constant c > 0 s.t. for all estimator p̂, all α-LDP
privatization channels Q, w.p. ≥ O(e−d)

sup
p∈Pd

TV (p, p̂) ≥ c

{
ε

α

√
d

k
+

d

α
√
nk

}
.
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Rates comparison

n batches of k samples → nk samples.
Privacy level α.
contamination level ε.

Constraint Upper bound Lower bound

Contamination+LDP
(Our bound)

d
α
√
nk

+
ε
√

log(1/ε)√
k

√
d
α2

d
α
√
nk

+ ε√
k

√
d
α2

LDP only d
α
√
nk

d
α
√
nk

Contamination only

√
d
nk +

ε
√

log(1/ε)√
k

√
d
nk +

ε√
k
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Related work

acharya2021robust; Cheu, Smith, and Ullman, 2021: Consider contamination
after privacy in various settings including discrete distributions. Nearly
matching upper and lower bounds.
Li, Berrett, and Yu, 2022 Consider contamination before privacy in various
settings.
Liu et al., 2021: (Xi )i iid from Subgaussian distribution. The data (Xi )i are
contaminated before privatization.

None of them consider batches.
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Contamination before vs. after privacy

Estimation error caused by contami-
nation multiplied by

√
d/α.

Estimation error caused by contami-
nation unchanged.
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Algorithm

The algorithm proceeds in two mains steps:

1 Privatization step: Using the RAPPOR mechanism.
2 Robust estimation step: estimate the auxiliary quantity

q(j) := Ep

[
Z (j)

∣∣Z is a good sample
]

for all j ∈ [d ].

Deduce p̂ from q̂.
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Privatization step

q(j) := Ep

[
Z (j)

∣∣Z is a good sample
]

for all j ∈ [d ].

One has: p = eα+1
eα−1

(
q − 1

1+eα1
)
.

Given an estimator q̂, one can provide the estimator p̂ through

p̂j :=
eα + 1
eα − 1︸ ︷︷ ︸
�1/α

[
q̂j −

1
1+ eα

]
.

Thus, the error on p̂ is controlled by the error on q̂:,

n∑
j=1

|p̂j − pj | �
1
α

n∑
j=1

|q̂j − qj |.
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Robust estimation step

The algorithm is based on an iterative filtering of the batches.

We define for a collection of batches B ′ a contamination rate τB′ .

For each batch b, we define its corruption score εb.

Until the contamination rate is low, batches are eliminated based on the
corruption score.
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Iterative Filtering Mechanism

Input: Corruption level ε, Batch collection B.

Initialize B ′ ← B
While contamination rate of B ′, τB′ ≥ 200:

∀b ∈ B ′ compute corruption score εb
Bo ← {εn Batches with top corruption scores}
Define εtot =

∑
b∈Bo εb

While
∑

b∈Bo εb ≥ εtot/2:
Delete a batch from Bo , picking batch b with probability
proportional to εb

Output: Collection with low contamination rate B ′
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Under some technical assumptions:

1 If the contamination rate of a collection B ′ is smaller than a constant, then
the empirical mean of the frequencies of each coordinate in B ′, q̂B′ satisfies:

sup
S⊆[d ]

∑
j∈S

|q̂B′(j)− qj | . ε

√
d

k
.

2 Any collection of "good" batches has a low contamination rate.

3 Each deletion step of the iterative filtering procedure deletes an adversarial
batch w.p. at least 3/4.
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Contamination rate
For simplicity, assume we want to estimate the first coordinate q1.

Define for each batch b and each collection and batches B ′:

q̂b(1) :=
1
k

k∑
i=1

Z b
i (1) and q̂B′(1) :=

1
|B ′|

∑
b∈B′

q̂b(1).

Introduce the following estimates of the second order moment:

V̂ar
B′

1 (b) :=
∑
b∈B′

[
q̂b(1)− q̂B′(1)

]2
,

Var1 (q̂B′(1)) :=
q̂B′(1)(1− q̂B′(1))

k
.

The proxy contamination rate is defined through:

τB′ :=
1

εd ln(1/ε)
k

∣∣∣∣Var1 (q̂B′(1))− V̂ar
B′

1 (b)

∣∣∣∣ .
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Corruption scores

The proxy contamination scores are defined as:

εb :=
[
q̂b(1)− q̂B′(1)

]2
.
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Lower Bound

For any α-LDP mechanism Q, there exit two probability vectors p, q ∈ Pd s.t.:

‖p − q‖1 &
ε
√
d

α
√
k
∧ 1

and

TV (Qp⊗k ,Qq⊗k) ≤ ε.
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Thank you !
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