Decentralized Learning in Online Queuing Systems

Flore Sentenac

ENSAE Paris

Etienne Boursier

ENS Paris-Saclay

Vianney Perchet

ENSAE Paris Criteo Al Lab

NeurIPS 2021

Motivations

Second-by-second packet routing Dropped packets have to be resent in next rounds

 \rightarrow Learning in repeated games with carryover?

Queuing Systems: Single Queue

- At each round $t = 1, \ldots, \infty$:
 - packet arrives with proba λ
 - sends a packet to server $k \in [K]$
 - server k clears with proba μ_k
 - $\bullet~\text{if fails} \rightarrow \text{packet back in queue}$

 μ_1

Queuing Systems: Multiple Queues

- At each round $t = 1, \ldots, \infty$:
 - *N* queues (*N* ≤ *K*)
 - Heterogeneous arrival rates λ_i
 - each queue chooses $a_t^i \in [K]$
 - Server treats one packet at a time, the oldest one

Stability

 Q_t^i := number of packets in queue *i* at time *t*.

A queue *i* is **stable** if for any *r*, there is a constant $C_r > 0$ such that $\mathbb{E}[(Q_t^i)^r] \le C_r \qquad \forall t \in \mathbb{N}.$

System is stable if all queues are stable.

Overview: Stability as a function of Slack

Note
$$\lambda_{(1)} \geq \ldots \geq \lambda_{(N)}$$
 and $\mu_{(1)} \geq \ldots \geq \mu_{(K)}$.

		Stable centralized strategies	
		Stable NE without learning	
	No stable strategies	Stable no regret policies	
		Stable decentralized strategies	
C)	$\frac{e}{e-1}$ 2 r	η

Previous results: Stable no regret policies

Define regret

$$R_i(T) = \max_{k \in [K]} \sum_{t=1}^{T} \nu_t^i(k) - \sum_{t=1}^{T} \underbrace{\nu_t^i(a_t^i)}_{i}.$$

(?)

If $\eta > 2$ and all queues follow a no regret strategy: $R_i(T) = o(T)$ w.h.p., then the system is stable.

Previous results: Stable NE without learning

Define game $\mathcal{G} = ([N], (c_i)_{i=1}^n, \boldsymbol{\mu}, \boldsymbol{\lambda})$ with

- Action Space: $p_i \in \mathcal{P}([K])$, queue *i* chooses server $a_t^i \sim p_i$ at time *t*,
- Cost Function:

$$c_i(p_i, \boldsymbol{p_{-i}}) = \lim_{t \to +\infty} rac{T_t'}{t}$$

where T_t^i is the age of the oldest packet in queue *i* at time *t*.

(?) If $\eta > \frac{e}{e-1}$, all Nash equilibria of \mathcal{G} are stable.

No Policy-regret

Define the policy regret of queue *i*:

$$\max_{\boldsymbol{p}\in\mathcal{P}([\mathcal{K}])} \sum_{t=1}^{T} \underbrace{\mathbb{E}_{\tilde{\boldsymbol{a}}_{1:t}^{i}\sim\otimes_{i=1}^{t}\boldsymbol{p}}[\nu_{t}(\tilde{\boldsymbol{a}}_{1:t}^{i})]}_{\mathbb{E}_{\tilde{\boldsymbol{a}}_{1:t}^{i}\sim\otimes_{i=1}^{t}\boldsymbol{p}}[\nu_{t}(\tilde{\boldsymbol{a}}_{1:t}^{i})]} - \sum_{t=1}^{T} \mathbb{E}[\nu_{t}(\boldsymbol{a}_{1:t}^{i})]$$

and recall the definition of regret :

$$R_i(T) = \max_{k \in [K]} \sum_{t=1}^T \nu_t^i(k) - \sum_{t=1}^T \underbrace{\nu_t^i(a_t^i)}_{\nu_t^i(a_t^i)}.$$

There is an instance with $\eta = 2 - O(\frac{1}{N})$, s.t. each queue's policy regret is o(T), but the system is not strongly stable.

An unstable no-policy regret strategy

An unstable no-policy regret strategy

A stable learning strategy

Assumptions:

- all queues know N and have attributed ranks $i \in [N]$
- shared randomness between queues

Theorem

If $\eta > 1$ and all queues follow ADeQuA, then the system is stable.

ADeQuA: A DEcentralized QUeuing Algorithm

```
for t = 1, ..., \infty do

Draw \omega_1 \sim \text{Bernoulli}(\varepsilon_t) // s

if \omega_1 = 1 then Explore

else Exploit

end
```

// shared randomness

Exploration

All queues explore simultaneously and explore either μ or λ

Explore μ : queues choose servers without colliding \rightarrow accurate estimations of μ_k

Assumption: servers break ties in packets' age uniformly at random *i* clears with probability $(1 - \frac{\lambda_j}{2})\mu_k$

ightarrow estimate λ_j

Exploitation: centralized

When centralized:

- $\phi: (\hat{\lambda}, \hat{\mu}) \mapsto$ marginals ensuring stability
- $\psi : P \mapsto$ coupling without collision (Birkhoff von Neumann decomposition)

Centralized exploitation	
Draw $\omega_2 \sim \mathcal{U}(0,1)$	<pre>// shared randomness</pre>
Play $\psi(\phi(\hat{\lambda},\hat{\mu}))(\omega_2)$	

When decentralized:

- compute mapping $\hat{A}^i = \psi(\phi(\hat{\lambda}^i, \hat{\mu}^i)) : [0, 1] \to \mathbb{R}^N$
- play $\hat{A}^i(\omega_2)(i)$

(dominant mapping)

Exploitation: decentralized

Compute mapping $\hat{A}^i = \psi(\phi(\hat{\lambda}^i, \hat{\mu}^i))$

Problem: estimates $(\hat{\lambda}^i, \hat{\mu}^i)$ differ (but are close) But general dominant mappings and BvN decompositions are non-continuous

$$\|\hat{A}^{i}-\hat{A}^{j}\|$$
 arbitrarily large \implies too many collisions

If
$$\phi$$
 and ψ regular $\rightarrow \|\hat{A}^i - \hat{A}^i\|$ small \implies small amount of collisions

Challenge: design regular dominant mapping and BvN decomposition

Simulations

Hard instance, $\eta < 2$.

- No regret strategies: unstable
- ADeQuA: stable & number of packets decreases after learning

Easy instance, $\eta > 2$.

- both strategies stable
- No regret better suited to easy instances?

Conclusion

Recap

- cooperation required in queuing systems
- patience not enough for stable learning
- first decentralized stable learning strategy (for $\eta > 1$)

Perspectives

- decrease the maximal number of accumulated packets at each time
- asynchronous case: queues don't share a common time clock
- enhancement with additional observation (eg collision information)

Thank you!

Join us at poster session