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Motivations

Second-by-second packet routing
Dropped packets have to be resent in next rounds

→ Learning in repeated games with carryover?
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Queuing Systems: Single Queue

At each round t = 1, . . . ,∞:
packet arrives with proba λ
sends a packet to server k ∈ [K ]

server k clears with proba µk

if fails → packet back in queue

...

success

λ

µ1

µ2

µK
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Queuing Systems: Multiple Queues

At each round t = 1, . . . ,∞:
N queues (N ≤ K )

Heterogeneous arrival rates λi
each queue chooses ait ∈ [K ]

Server treats one packet at a time,
the oldest one

...

success

fail

λ2

µ1

µK

λ3

λ1

µ2
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Stability

Q i
t := number of packets in queue i at time t.

A queue i is stable if for any r , there is a constant Cr > 0 such that

E[(Q i
t)

r ] ≤ Cr ∀t ∈ N.

System is stable if all queues are stable.
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Overview: Stability as a function of Slack

Note λ(1) ≥ . . . ≥ λ(N) and µ(1) ≥ . . . ≥ µ(K).

Slack of the System
Largest η s.t. η

∑n
i=1 λ(i) ≤

∑n
i=1 µ(i), ∀n ≤ N.

No stable strategies

Stable centralized strategies

Stable NE without learning

Stable no regret policies

Stable decentralized strategies
η0 1 e

e−1 2
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Previous results: Stable no regret policies

Define regret

Ri (T ) = max
k∈[K ]

T∑
t=1

ν it(k)−
T∑
t=1

1 if clears︷ ︸︸ ︷
ν it(a

i
t) .

(?)
If η > 2 and all queues follow a no regret strategy: Ri (T ) = o(T ) w.h.p., then the
system is stable.
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Previous results: Stable NE without learning

Define game G = ([N], (ci )
n
i=1,µµµ,λλλ) with

Action Space: pi ∈ P([K ]), queue i chooses server ait ∼ pi at time t,
Cost Function:

ci (pi ,p−ip−ip−i ) = lim
t→+∞

T i
t

t

where T i
t is the age of the oldest packet in queue i at time t.

(?)
If η > e

e−1 , all Nash equilibria of G are stable.

7 / 15



No Policy-regret

Define the policy regret of queue i :

max
p∈P([K ])

T∑
t=1

reward i would get if
playing p for all rounds︷ ︸︸ ︷
Eãi1:t∼⊗t

i=1p
[νt(ã

i
1:t)]−

T∑
t=1

E[νt(ai1:t)]

and recall the definition of regret :

Ri (T ) = max
k∈[K ]

T∑
t=1

ν it(k)−
T∑
t=1

1 if clears︷ ︸︸ ︷
ν it(a

i
t) .

There is an instance with η = 2− O( 1
N ), s.t. each queue’s policy regret is o(T ),

but the system is not strongly stable.
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An unstable no-policy regret strategy

Phase 1 Phase 2

t
TαT

∀i ∈ [N ], λi = 1
N , µi = 2

N −
1
N2
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An unstable no-policy regret strategy

Phase 1 Phase 2

t
TαT

∀i ∈ [N ], λi = 1
N , µi = 2

N −
1
N2
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A stable learning strategy

Assumptions:
all queues know N and have attributed ranks i ∈ [N]

shared randomness between queues

Theorem
If η > 1 and all queues follow ADeQuA, then the system is stable.

ADeQuA: A DEcentralized QUeuing Algorithm
for t = 1, . . . ,∞ do

Draw ω1 ∼ Bernoulli(εt) // shared randomness
if ω1 = 1 then Explore
else Exploit

end
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Exploration

All queues explore simultaneously and explore either µµµ or λλλ

Explore µµµ: queues choose servers without colliding
→ accurate estimations of µk

λ1
λ2
λ3
λ4

µ1
µ2
µ3

learn µ
without
collision

µK

Explore λλλ: when queue i explores queue j , both
choose same server k with packet generated at
t (if it exists)

Assumption: servers break ties in packets’ age
uniformly at random
i clears with probability (1− λj

2 )µk

→ estimate λj

...

λ1
λ2
λ3
λ4

µ1
µ2

learn λthrough
collisions

µK
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Exploitation: centralized

When centralized:
φ : (λ̂, µ̂) 7→ marginals ensuring stability (dominant mapping)
ψ : P 7→ coupling without collision (Birkhoff von Neumann decomposition)

Centralized exploitation
Draw ω2 ∼ U(0, 1) // shared randomness

Play ψ(φ(λ̂, µ̂))(ω2)

When decentralized:
compute mapping Âi = ψ(φ(λ̂i , µ̂i )) : [0, 1]→ RN

play Âi (ω2)(i)
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Exploitation: decentralized

Compute mapping Âi = ψ(φ(λ̂i , µ̂i ))

Problem: estimates (λ̂i , µ̂i ) differ (but are close)
But general dominant mappings and BvN decompositions are non-continuous

‖Âi − Âj‖ arbitrarily large =⇒ too many collisions

If φ and ψ regular → ‖Âi − Âj‖ small
=⇒ small amount of collisions

Challenge: design regular dominant mapping and BvN decomposition

13 / 15



Simulations
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Hard instance, η < 2.

No regret strategies: unstable
ADeQuA: stable & number of
packets decreases after learning
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Easy instance, η > 2.

both strategies stable
No regret better suited to easy
instances?
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Conclusion

Recap
cooperation required in queuing systems
patience not enough for stable learning
first decentralized stable learning strategy (for η > 1)

Perspectives
decrease the maximal number of accumulated packets at each time
asynchronous case: queues don’t share a common time clock
enhancement with additional observation (eg collision information)
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Thank you!

Join us at poster session ,


