
Decentralized Learning in Online Queuing Systems

Flore Sentenac

ENSAE Paris

Etienne Boursier

ENS Paris-Saclay

Vianney Perchet

ENSAE Paris
Criteo AI Lab

NeurIPS 2021

Motivations

Second-by-second packet routing
Dropped packets have to be resent in next rounds

! Learning in repeated games with carryover?

1 / 15

Queuing Systems: Single Queue

At each round t = 1; : : : ;1:
packet arrives with proba �
sends a packet to server k 2 [K]

server k clears with proba �k

if fails ! packet back in queue

...

success

�

�1

�2

�K

2 / 15

Queuing Systems: Multiple Queues

At each round t = 1; : : : ;1:
N queues (N � K)

Heterogeneous arrival rates �i

each queue chooses ai
t 2 [K]

Server treats one packet at a time,
the oldest one

...

success

fail

�2

�1

�K

�3

�1

�2

3 / 15

Stability

Q i
t := number of packets in queue i at time t.

A queue i is stable if for any r , there is a constant Cr > 0 such that

E[(Q i
t)

r] � Cr 8t 2 N:

System is stable if all queues are stable.

4 / 15

Overview: Stability as a function of Slack

Note �(1) � : : : � �(N) and �(1) � : : : � �(K).

Slack of the System
Largest � s.t. �

Pn
i=1 �(i) �

Pn
i=1 �(i); 8n � N:

No stable strategies

Stable centralized strategies

Stable NE without learning

Stable no regret policies

Stable decentralized strategies
�0 1 e

e�1
2

5 / 15

Previous results: Stable no regret policies

Define regret

Ri (T) = max
k2[K]

TX
t=1

� i
t(k)�

TX
t=1

1 if clearsz }| {
� i

t(a
i
t) :

(?)
If � > 2 and all queues follow a no regret strategy: Ri (T) = o(T) w.h.p., then the
system is stable.

6 / 15

Previous results: Stable NE without learning

Define game G = ([N]; (ci)
n
i=1;���;���) with

Action Space: pi 2 P([K]), queue i chooses server ai
t � pi at time t,

Cost Function:

ci (pi ;p�ip�ip�i) = lim
t!+1

T i
t

t

where T i
t is the age of the oldest packet in queue i at time t.

(?)
If � > e

e�1 , all Nash equilibria of G are stable.

7 / 15

No Policy-regret

Define the policy regret of queue i :

max
p2P([K])

TX
t=1

reward i would get if
playing p for all roundsz }| {

E~ai
1:t�
t

i=1p[�t(~ai
1:t)]�

TX
t=1

E[�t(a
i
1:t)]

and recall the definition of regret :

Ri (T) = max
k2[K]

TX
t=1

� i
t(k)�

TX
t=1

1 if clearsz }| {
� i

t(a
i
t) :

There is an instance with � = 2� O(1
N), s.t. each queue’s policy regret is o(T),

but the system is not strongly stable.

8 / 15

An unstable no-policy regret strategy

Phase 1 Phase 2

t
T�T

8i 2 [N], �i = 1
N , �i = 2

N �
1
N2

9 / 15

An unstable no-policy regret strategy

Phase 1 Phase 2

t
T�T

8i 2 [N], �i = 1
N , �i = 2

N �
1
N2

9 / 15

A stable learning strategy

Assumptions:
all queues know N and have attributed ranks i 2 [N]

shared randomness between queues

Theorem
If � > 1 and all queues follow ADeQuA, then the system is stable.

ADeQuA: A DEcentralized QUeuing Algorithm
for t = 1; : : : ;1 do

Draw !1 � Bernoulli("t) // shared randomness
if !1 = 1 then Explore
else Exploit

end

10 / 15

Exploration

All queues explore simultaneously and explore either ��� or ���

Explore ���: queues choose servers without colliding
! accurate estimations of �k

�1

�2

�3

�4

�1

�2

�3

learn �
without
collision

�K

Explore ���: when queue i explores queue j , both
choose same server k with packet generated at
t (if it exists)

Assumption: servers break ties in packets’ age
uniformly at random
i clears with probability (1� �j

2)�k

! estimate �j

...

�1

�2

�3

�4

�1

�2
learn �through
collisions

�K

11 / 15

Exploitation: centralized

When centralized:
� : (�̂; �̂) 7! marginals ensuring stability (dominant mapping)
 : P 7! coupling without collision (Birkhoff von Neumann decomposition)

Centralized exploitation
Draw !2 � U(0; 1) // shared randomness

Play (�(�̂; �̂))(!2)

When decentralized:
compute mapping Âi = (�(�̂i ; �̂i)) : [0; 1]! RN

play Âi (!2)(i)

12 / 15

Exploitation: decentralized

Compute mapping Âi = (�(�̂i ; �̂i))

Problem: estimates (�̂i ; �̂i) differ (but are close)
But general dominant mappings and BvN decompositions are non-continuous

kÂi � Âjk arbitrarily large =) too many collisions

If � and regular ! kÂi � Âjk small
=) small amount of collisions

Challenge: design regular dominant mapping and BvN decomposition

13 / 15

