Decentralized Learning in Online Queuing Systems

Flore Sentenac Etienne Boursier Vianney Perchet

ENSAE Paris ENS Paris-Saclay ENSAE Paris
Criteo Al Lab

NeurlPS 2021

Motivations

Second-by-second packet routing
Dropped packets have to be resent in next rounds

— Learning in repeated games with carryover?

1/15

Queuing Systems: Single Queue

At each round t =1,...,00: cuccess
. i 12 P
@ packet arrives with proba A /
A
@ sends a packet to server k € [K] oo0
@ server k clears with proba 1y
o if fails — packet back in queue

2/15

Queuing Systems: Multiple Queues

At each round t =1,...,00:
o N queues (N < K)
@ Heterogeneous arrival rates \;
@ each queue chooses a} € [K]

@ Server treats one packet at a time,
the oldest one

success

! g»

[[
TN

3/15

Stability

Qi:= number of packets in queue i at time t.

A queue i is stable if for any r, there is a constant C, > 0 such that

E[(Q)]<C VteN.

System is stable if all queues are stable.

4/18

Overview: Stability as a function of Slack

Note)\(1) > ... 2 /\(N) and (1) > .= H(K)-

Slack of the System
Largest s.t. n Y0 Aiy < Doiq gy, V< N.

Stable centralized strategies

Stable NE without learning
]

No stable strategies 1 Stable no regret policies

1
Stable decentralized strategies

2 >

—k---------

©
|
—

5/15

Previous results: Stable no regret policies

Define regret

T ' 1 if. cle.ars
RAT) = e 3 vi(k) = 3 i)

(?)

If n > 2 and all queues follow a no regret strategy: R;(T) = o(T) w.h.p., then the
system is stable.

6/15

Previous results: Stable NE without learning

Define game G = ([N], (¢;)7_q, i, A) with
@ Action Space: p; € P([K]), queue i chooses server a| ~ p; at time t,

@ Cost Function:

Ci(PiaP—i) = lim

i
_t
t—+oco t

where T/ is the age of the oldest packet in queue i at time t.

(?)

If n > -5, all Nash equilibria of G are stable.

7/15

No Policy-regret

Define the policy regret of queue i:

reward i/ would get if
playing p for all rounds

max Es o v 53— Elv (s
PEP(KD {5 ™ ®,:1p[¢(31.1)] ; [ve(a1.)]

and recall the definition of regret :

1 if clears
LI —~
Ri(T) = max > vitk) =Y via)) -
t=1 t=1

There is an instance with n =2 — O(4), s.t. each queue’s policy regret is o(T),

but the system is not strongly stable.

8/15

An unstable no-policy regret strategy

Phase 1 Phase 2

~

ol T

—
e

Vi€ [N], \; =

=l

v i

==
i

9/15

An unstable no-policy regret strategy

Phase 1 Phase 2

~

/ V.

9/15

A stable learning strategy

Assumptions:
o all queues know N and have attributed ranks i € [N]

@ shared randomness between queues

Theorem
If n > 1 and all queues follow ADeQuA, then the system is stable.

ADeQuA: A DEcentralized QUeuing Algorithm

fort=1,...,00do

Draw w; ~ Bernoulli(e,) // shared randomness
if w; = 1 then Explore

else Exploit

end

10/15

Exploration

All queues explore simultaneously and explore either o or A

. . e Al M1
Explore p: queues choose servers without colliding . %, \ learn gt

without

— accurate estimations of)\3><ZL:3 Colison
s MK

Explore A\: when queue i explores queue j, both
choose same server k with packet generated at
t (if it exists)

learn
throug

Assumption: servers break ties in packets’ age collisions

uniformly at random
i clears with probability (1 — %)ﬂk
— estimate);

11/18

Exploitation: centralized

When centralized:
@ ¢ (S\,ﬁ) — marginals ensuring stability (dominant mapping)
@ ¢ : P — coupling without collision (Birkhoff von Neumann decomposition)

Centralized exploitation

Draw wg ~ U(O, 1) // shared randomness
Play {(¢(A, 1)) (w2)

When decentralized:
o compute mapping A’ = i(p(N', i) : [0,1] — RV
o play Ai(wg)(i)

12/18

Exploitation: decentralized

Compute mapping A’ = 1/)((;5(5\"., i)

Problem: estimates (X, i) differ (but are close)
But general dominant mappings and BvN decompositions are non-continuous

|A" — A|| arbitrarily large. = too many collisions
If ¢ and 1 regular — ||A" — A/|| small
= small amount of collisions

Challenge: design regular dominant mapping and BvN decomposition

13/15

Simulations

w 10*1 " —— ADeQuA
z 2 —— EXP3.P1
Z 0 = 10"
élo C:é\
5 107 5
f:’ 10 f:i
g g
=) —— ADeQuA =
“0 —— EXP3.P.1 “
ol
00 02 04 06 08 10 00 02 04 06 08 10
Tteration x10° [teration x10°
Hard instance, n < 2. Easy instance, n > 2.
@ No regret strategies: unstable @ both strategies stable
o ADeQuA: stable & number of @ No regret better suited to easy
packets decreases after learning instances?

14 /15

Conclusion

Recap
@ cooperation required in queuing systems
@ patience not enough for stable learning
o first decentralized stable learning strategy (for n > 1)

Perspectives
@ decrease the maximal number of accumulated packets at each time
@ asynchronous case: queues don't share a common time clock

@ enhancement with additional observation (eg collision information)

15 /15

Thank you!

Join us at poster session ®

